Citation: Guo-Qiang LIU. Preparation and Electrocatalytic Activities for Oxygen Evolution Reaction of CoBx/Co3O4 Catalyst[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(2): 267-275. doi: 10.11862/CJIC.2021.022 shu

Preparation and Electrocatalytic Activities for Oxygen Evolution Reaction of CoBx/Co3O4 Catalyst

  • Corresponding author: Guo-Qiang LIU, gqliu@issp.ac.cn
  • Received Date: 21 August 2020
    Revised Date: 19 November 2020

Figures(6)

  • Herein, the room temperature treatment of Co3O4 nanorods via NaBH4 aqueous solution results in situ generation of amorphous CoBx nanosheets on nanorods (CoBx/Co3O4) electrocatalyst with abundant oxygen vacancies. The X-ray diffractometer (XRD), field emission scanning electron microscope (FESEM), transmission electron microscope (TEM), and X-ray photoelectron spectroscope (XPS) were applied to investigate the crystal structures, morphologies, element distribution, and chemical states of the prepared electrocatalysts. The activity, stability, and electrochemical impedance spectroscopy (EIS) were recorded by an electrochemical workstation. The amorphous CoBx and oxygen vacancies were formed on surface of Co3O4 nanorods as active sites after treatment via NaBH4. The CoBx/Co3O4 showed excellent performance for oxygen evolution reaction (OER) with lower overpotential of 298 mV than that of Co3O4 (346 mV) to achieve a current density of 10 mA·cm-2 in 1.0 mol·L-1 KOH.
  • 加载中
    1. [1]

      ZHAO Z M, DING J W, DUAN H Y, PANG H. Chinese J. Inorg. Chem., 2020, 36(6):1079-1084
       

    2. [2]

      ZHOU Q, DUAN D D, FENG J W. Chinese J. Inorg. Chem., 2019, 35(12):2301-2310  doi: 10.11862/CJIC.2019.258
       

    3. [3]

      Dou S, Wang X, Wang S Y. Small Methods, 2019, 3(1):1800211  doi: 10.1002/smtd.201800211

    4. [4]

      Lv L, Li Z S, Xue K H, Ruan Y J, Ao X, Wan H Z, Miao X S, Zhang B S, Jiang J J, Wang C D, Ostrikov K. Nano Energy, 2018, 47:275-284  doi: 10.1016/j.nanoen.2018.03.010

    5. [5]

      Wei C, Sun S N, Mandler D, Wang X, Qiao S Z, Xu Z C. Chem. Soc. Rev., 2019, 48:2518-2534  doi: 10.1039/C8CS00848E

    6. [6]

      Wang B, Tang C, Wang H F, Chen X, Cao R, Zhang Q. Adv. Mater., 2019, 31(4):1805658  doi: 10.1002/adma.201805658

    7. [7]

      Yu F, Zhou H Q, Huang Y F, Sun J Y, Qin F, Bao J M, Goddard W A, Chen S, Ren Z F. Nat. Commun., 2018, 9:2551  doi: 10.1038/s41467-018-04746-z

    8. [8]

      Chen P Z, Tong Y, Wu C Z, Xie Y. Acc. Chem. Res., 2018, 51(11):2857-2866  doi: 10.1021/acs.accounts.8b00266

    9. [9]

      Wang C M, Bai S, Xiong Y J. Chinese J. Catal., 2015, 36:1476-1493  doi: 10.1016/S1872-2067(15)60911-1

    10. [10]

      Shan J Q, Zheng Y, Shi B Y, Davey K, Qiao S Z. ACS Energy Lett., 2019, 4(11):2719-2730  doi: 10.1021/acsenergylett.9b01758

    11. [11]

      Kang Q, Cao J Y, Zhang Y J, Liu L Q, Xu H, Ye J H. J. Mater. Chem. A, 2013, 1:5766-5774  doi: 10.1039/c3ta10689f

    12. [12]

      Tang Y Q, Shen H M, Cheng J Q, Liang Z B, Qu C, Tabassum H, Zou R Q. Adv. Funct. Mater., 2020, 30(11):1908223  doi: 10.1002/adfm.201908223

    13. [13]

      Yu X X, Yu Z Y, Zhang X L, Li P, Sun B, Gao X C, Yan K, Liu H, Duan Y, Gao M R, Wang G X, Yu S H. Nano Energy, 2020, 71:104652  doi: 10.1016/j.nanoen.2020.104652

    14. [14]

      He D P, Zhang L B, He D S, Zhou G, Lin Y, Deng Z X, Hong X, Wu Y E, Chen C, Li Y D. Nat. Commun., 2016, 7:12362  doi: 10.1038/ncomms12362

    15. [15]

      Pei Y, Zhou G B, Luan N, Zong B N, Qiao M H, Tao F. Chem. Soc. Rev., 2012, 41:8140-8162

    16. [16]

      Xu N, Cao G X, Chen Z J, Kang Q, Dai H B, Wang P. J. Mater. Chem. A, 2017, 5:12379-12384  doi: 10.1039/C7TA02644G

    17. [17]

      Nsanzimana J M V, Peng Y C, Xu Y Y, Thia L, Wang C, Xia B Y, Wang X. Adv. Energy Mater., 2017, 8(1):1701475

    18. [18]

      Masa J, Weide P, Peeters D, Sinev I, Xia W, Sun Z Y, Somsen C, Muhler M, Schuhmann W. Adv. Energy Mater., 2016, 6(6):1502313  doi: 10.1002/aenm.201502313

    19. [19]

      Hao W J, Wu R B, Zhang R Q, Ha Y, Chen Z L, Wang L C, Yang Y J, Ma X H, Sun D L, Fang F, Guo Y H. Adv. Energy Mater., 2018, 8(26):1801372  doi: 10.1002/aenm.201801372

    20. [20]

      Guo Y N, Tang J, Wang Z L, Kang Y M, Bando Y, Yamauchi Y. Nano Energy, 2018, 47:494-502  doi: 10.1016/j.nanoen.2018.03.012

    21. [21]

      Hai G T, Jia X L, Zhang K Y, Liu X, Wu Z Y, Wang G. Nano Energy, 2018, 44:345-352  doi: 10.1016/j.nanoen.2017.11.071

    22. [22]

      Yang Y S, Zhuang L Z, Rufford T E, Wang S B, Zhu Z H. RSC Adv., 2017, 7:32923-32930  doi: 10.1039/C7RA02558K

    23. [23]

      Li T T, Zhu C X, Yang X G, Gao Y H, He W W, Yue H W, Zhao X G. Electrochim. Acta, 2017, 246:226-233  doi: 10.1016/j.electacta.2017.06.054

    24. [24]

      Lu Y Z, Jing Wang J, Zeng S Q, Zhou L J, Xu W, Zheng D Z, Liu J, Zeng Y X, Lu X H. J. Mater. Chem. A, 2019, 7:21678-21683  doi: 10.1039/C9TA08625K

    25. [25]

      Zhang L, Liang Q M, Yang P, Huang Y, Chen W J, Deng X M, Yang H H, Yan J H, Liu Y N. Int. J. Hydrogen Energy, 2019, 44:24209-24217  doi: 10.1016/j.ijhydene.2019.07.146

    26. [26]

      Guo Y, Chen S, Li Y, Wang Y W, Zou H B, Tong X L. Chem. Commun., 2020, 56:4448-4451  doi: 10.1039/D0CC01228A

    27. [27]

      Gao S, Jiao X C, Sun Z T, Zhang W H, Sun Y F, Wang C M, Hu Q T, Zu X L, Yang F, Yang S Y, Liang L, Wu J, Xie Y. Angew. Chem. Int. Ed., 2016, 128(2):708-712  doi: 10.1002/ange.201509800

    28. [28]

      Liu G Q, Sun Z T, Zhang X, Wang H J, Wang G Z, Wu X J, Zhang H M, Zhao H J. J. Mater. Chem. A, 2018, 6:19201-19209  doi: 10.1039/C8TA07162D

    29. [29]

      Fernandes R, Patel N, Miotello A, Filippi M. J. Mol. Catal. A:Chem., 2009, 298:1-6  doi: 10.1016/j.molcata.2008.09.014

    30. [30]

      Zhou W J, Lu J, Zhou K, Yang L J, Ke Y T, Tang Z H, Chen S W. Nano Energy, 2016, 28:143-150  doi: 10.1016/j.nanoen.2016.08.040

    31. [31]

      Zhou H Q, Yu F, Sun J Y, He R, Chen S, Chu C W, Ren Z F. Proc. Natl. Acad. Sci. U.S.A., 2017, 114(22):5607-5611  doi: 10.1073/pnas.1701562114

    32. [32]

      Cai Z, Bi Y M, Hu E Y, Liu W, Dwarica N, Tian Y, Li X L, Kuang Y, Li Y P, Yang X Q, Wang H L, Sun X M. Adv. Energy Mater., 2017, 8(3):1701694

    33. [33]

      Wang Y C, Zhou T, Jiang K, Da P M, Peng Z, Tang J, Kong B, Cai W B, Yang Z Q, Zheng G F. Adv. Energy Mater., 2014, 4(16):1400696  doi: 10.1002/aenm.201470082

    34. [34]

      Gregoratti L, Baraldi A, Dhanak V R, Comelli C, Kiskinova M, Rosei R. Surf. Sci., 1995, 340:205-214  doi: 10.1016/0039-6028(95)00695-8

    35. [35]

      Mi Y Y, Qiu Y, Liu Y F, Peng X Y, Hu M, Zhao S Z, Cao H Q, Zhuo L Z, Li H Y, Ren J Q, Liu X J, Luo J. Adv. Funct. Mater., 2020, 30(31):2003438  doi: 10.1002/adfm.202003438

    36. [36]

      Zhang C X, Liu H X, He J, Hu G Z, Bao H F, Lv F, Zhuo L C, Ren J Q, Liu X J, Luo J. Chem. Commun., 2019, 55:10511-10514  doi: 10.1039/C9CC04481G

    37. [37]

      Yan L T, Cao L, Dai P C, Gu X, Liu D D, Li L J, Wang Y, Zhao X B. Adv. Funct. Mater., 2017, 27(40):1703455

    38. [38]

      Gupta S, Jadhav H, Sinha S, Miotello A, Patel M K, Sarkar A, Patel N. ACS Sustainable Chem. Eng., 2019, 7(19):16651-16658

    39. [39]

      Wu J D, Wang D P, Wan S A, Liu H L, Wang C, Wang X. Small, 2020, 16(15):1900550

    40. [40]

      Jin H Y, Mao S J, Zhan G P, Xu F, Bao X B, Wang Y. J. Mater. Chem. A, 2017, 5:1078-1084  doi: 10.1039/C6TA09959A

    41. [41]

      Chi K, Tian X, Wang Q J, Zhang Z Y, Zhang X Y, Zhang Y, Jing F, Lv Q Y, Yao W, Xiao F, Wang S. J. Catal., 2020, 381:44-52

    42. [42]

      Hao S Y, Chen L C, Yu C L, Yang B, Li Z J, Hou Y, Lei L C, Zhang X W. ACS Energy Lett., 2019, 4(4):952-959

    43. [43]

      Zhou G Y, Li M, Li Y L, Dong H, Sun D M, Liu X E, Xu L, Tian Z Q, Tang Y W. Adv. Funct. Mater., 2020, 30(7):1905252

    44. [44]

      Chen Z J, Kang Q, Cao G X, Xu N, Dai H B, Wang P. Int. J. Hydrogen, Energy, 2018, 43:6076-6087

    45. [45]

      Liu G Q, Zhang X, Zhao C J, Xiong Q Z, Gong W B, Wang G Z, Zhang Y X, Zhang H M, Zhao H J. New J. Chem., 2018, 42:6381-6388

    46. [46]

      Zhang J. Li X X, Liu Y T, Zeng Z W, Cheng X, Wang Y D, Tu W M, Pan M. Nanoscale, 2018, 10:11997-12002

    47. [47]

      Liu G Q, Zhao C J, Wang G Z, Zhang Y X, Zhang H M. J. Colloid Interface Sci., 2018, 532:37-46

    48. [48]

      Han X P, Wu X Y, Deng Y D, Liu J, Lu J, Zhong C, Hu W B. Adv. Energy Mater., 2018, 8(24):1800935

    49. [49]

      Xiong S L, Yuan C Z, Zhang X G, Xi B J, Qian Y T. Chem. Eur. J., 2009, 15(21):5320-5326  doi: 10.1002/chem.200802671

    50. [50]

      Navale S T, Liu C, Gaikar P S, Patil V B, Sagar R U R, Du B, Mane R S, Stadler F J. Sensor. Actuat. B, 2017, 245:524-532  doi: 10.1016/j.snb.2016.07.136

    51. [51]

      Chernysheva D, Vlaic C, Leontyev I, Pudova L, Ivanov S, Avramenko M, Allix M, Rakhmatullin A, Maslova O, Bund A, Smirnova N. Solid State Sci., 2018, 86:3-59  doi: 10.1016/j.solidstatesciences.2018.10.005

    52. [52]

      Xu J, Zhang C X, Liu H X, Sun J Q, Xie R C, Qiu Y, Lv Fang, Liu Y F, Zhuo L C, Liu X J, Luo J. Nano Energy, 2020, 70:104529-104536

    53. [53]

      Duan Y, Yu Z U, Hu S J, Zheng X S, Zhang C T, Ding H H, Hu B C, Fu Q Q, Yu Z L, Zheng X, Zhu J F, Gao M R, Yu S H. Angew. Chem. Int. Ed., 2019, 131(44):15919-15924

    54. [54]

      Jiang N, You B, Boonstra R, Rodriguez I M T, Sun Y J. ACS Energy Lett., 2016, 1(2):386-390  doi: 10.1021/acsenergylett.6b00214

    55. [55]

      Jiang N, You B, Sheng M L, Sun Y J. Angew. Chem. Int. Ed., 2015, 127(21):6349-6352  doi: 10.1002/ange.201501616

    56. [56]

      Xu L, Jiang Q Q, Xiao Z H, Li X Y, Huo J, Wang S Y, Dai L M. Angew. Chem. Int. Ed., 2016, 128(17):5363-5367  doi: 10.1002/anie.201600687

    57. [57]

      Xu W J, Lyu F L, Bai Y C, Gao A Q, Feng J, Cai Z X, Yin Y D. Nano Energy, 2018, 43:110-116

    58. [58]

      Nsanzimana J M V, Gong L Q, Dangol R, Reddu V, Jose V, Xia B Y, Yan Q Y, Lee J M, Wang X. Adv. Energy Mater., 2019, 9(28):1901503  doi: 10.1002/aenm.201901503

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    3. [3]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    4. [4]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    5. [5]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    6. [6]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    7. [7]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332

    8. [8]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    9. [9]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    10. [10]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    11. [11]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    12. [12]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    13. [13]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    14. [14]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    15. [15]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    16. [16]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    17. [17]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    18. [18]

      Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391

    19. [19]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    20. [20]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

Metrics
  • PDF Downloads(10)
  • Abstract views(1719)
  • HTML views(414)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return