Citation: LIU Ying-Bing, YU Wen-Sheng, WANG Jin-Xian, DONG Xiang-Ting, FU Zhen-Dong, LIU Gui-Xia. Application of Bismuth-Based Nanomaterials in Imaging Diagnosis and Therapy for Cancer[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(1): 1-15. doi: 10.11862/CJIC.2021.013 shu

Application of Bismuth-Based Nanomaterials in Imaging Diagnosis and Therapy for Cancer

  • Corresponding author: LIU Gui-Xia, liuguixia22@163.com
  • Received Date: 6 August 2020
    Revised Date: 4 November 2020

Figures(10)

  • With the rapid development of nanomedicine, nanotherapeutic materials have attracted more and more attention due to their multifunctionality of diagnosis and treatment. Bismuth (Bi) based nanomaterials have excellent optical, electrical and magnetic properties, which make them have broad application in the field of integrated diagnosis and treatment of tumors. In this paper, we summarized the commonly used construction methods for Bi-based nanomaterials, and focused on their application in computed tomography (CT), photoacoustic imaging (PA), radiotherapy (RT), photothermal therapy (PTT) and synergy progress in applied research. At the same time, suggestions and prospects for further research progress in the future have been provided.
  • 加载中
    1. [1]

      Torre L A, Bray F, Siegel R L, Ferlay J, Lortet-Tieulent J, Jemal A. CA Cancer J. Clin., 2015, 65:87-108  doi: 10.3322/caac.21262

    2. [2]

      Zhao J Y, Zhong D, Zhou S B. J. Mater. Chem. B, 2018, 6(3):349-365  doi: 10.1039/C7TB02573D

    3. [3]

      Dong K, Liu Z, Liu J H, Huang S, Li Z H, Yuan Q H, Ren J S, Qu X G. Nanoscale, 2014, 6:2211-2217  doi: 10.1039/c3nr05455a

    4. [4]

      Dou Y, Yang X, Yang W T, Guo Y Y, Wu M L, Liu Y J, Li X D, Zhang X N, Chang J. ACS Appl. Mater. Interfaces, 2017, 9(2):1263-1272  doi: 10.1021/acsami.6b13493

    5. [5]

      Lee M Y, Lee C, Jung H S, Jeon M, Kim K S, Yun S H, Kim C, Hahn S K. ACS Nano, 2016, 10:822-831  doi: 10.1021/acsnano.5b05931

    6. [6]

      Luk B T, Fang R H, Hu C M, Copp J A, Thamphiwatana S, Dehaini D, Gao W W, Zhang K, Li S L, Zhang L F. Theranostics, 2016, 6:1004-1011  doi: 10.7150/thno.14471

    7. [7]

      Hu J J, Cheng Y J, Zhang X Z. Nanoscale, 2018, 10(48):22657-22672  doi: 10.1039/C8NR07627H

    8. [8]

      June C H, O'Connor R S, Kawalekar O U, Ghassemi S, Milone M C. Science, 2018, 359(6382):1361-1365  doi: 10.1126/science.aar6711

    9. [9]

      Shen J L, Zhang W, Qi R G, Mao Z W, Shen H F. Chem. Soc. Rev., 2018, 47(6):1969-1995  doi: 10.1039/C7CS00479F

    10. [10]

      Jaque D, Martinez-Maestro L, Rosal B, Haro-Gonzalez P, Benayas A, Plaza J L, Rodríguez E M, Solé J G. Nanoscale, 2014, 47(6):9494-9530
       

    11. [11]

      Feng J, Yu W Q, Xu Z, Wang F. Chem. Sci., 2020, 11:1649-1656  doi: 10.1039/C9SC06337D

    12. [12]

      CAO Y. Thesis for the Doctorate of Beijing University of Science and Technology. 2019.

    13. [13]

      Li S N, Zhang L Y, Wang T T, Li L, Wang C G, Su Z M. Chem. Commun., 2015, 51:14338-14341  doi: 10.1039/C5CC05676D

    14. [14]

      Zhou L B, Jing Y, Liu Y B, Liu Z H, Gao D Y, Chen H B, Song W Y, Wang T, Fang X F, Qin W P, Yuan Z, Dai S, Qiao Z A, Wu C F. Theranostics, 2018, 8:663-675  doi: 10.7150/thno.21927

    15. [15]

      Cheng Y, Zhang H Y. Chem. Eur. J., 2018, 24:17405-17418  doi: 10.1002/chem.201801588

    16. [16]

      Wang W N, Zhao M L, Zhang C Y, Qian H S. Chem. Rec., 2020, 20(1):2-9
       

    17. [17]

      Prochowicz D, Kornowicz A, Lewinski J. Chem. Rev., 2017, 117:13461-13501  doi: 10.1021/acs.chemrev.7b00231

    18. [18]

      Song Y, Liu G X, Dong X T, Wang J X, Yu W S, Li J M. J. Phys. Chem. C, 2015, 119:18527-18536  doi: 10.1021/acs.jpcc.5b06099

    19. [19]

      Sui J T, Chen Z Y, Liu G X, Dong X T, Yu W S, Wang J X. J. Lumin., 2019, 209:357-364  doi: 10.1016/j.jlumin.2019.01.046

    20. [20]

      Chen Z Y, Liu G X, Zhang X D, Sui J T, Dong X T, Yu W S, Song C. Mater. Sci. Eng. C, 2019, 104:109940  doi: 10.1016/j.msec.2019.109940

    21. [21]

      Liu W J, Liu G X, Wang J X, Dong X T, Yu W S. RSC Adv., 2016, 6:3250-3258  doi: 10.1039/C5RA23632K

    22. [22]

      SUI J T, CHEN Z Y, LIU G X, SONG C, DONG X T. Chinese J. Inorg. Chem., 2019, 35(6):987-995
       

    23. [23]

      Chen Z Y, Liu G X, Cui Z H, Liu Q X, Hong F, Yu W S, Dong X T, Song C. RSC Adv., 2019, 9:20778-20785  doi: 10.1039/C9RA03852C

    24. [24]

      Chen Z Y, Liu G X, Sui J T, Li D, Song C, Hong F, Dong X T, Wang J X, Yu W S. Appl. Surf. Sci., 2018, 458:931-939  doi: 10.1016/j.apsusc.2018.07.163

    25. [25]

      Liu W J, Liu G X, Dong X T, Wang J X, Yu W S. Phys. Chem. Chem. Phys., 2015, 17:22659-22667  doi: 10.1039/C5CP03725E

    26. [26]

      Sui J T, Liu G X, Song Y, Li D, Dong X T, Wang J X, Yu W S. J. Colloid Interface Sci., 2018, 510:292-301  doi: 10.1016/j.jcis.2017.09.085

    27. [27]

      LIU W J, LIU G X, WANG J X, DONG X T. Chinese J. Inorg. Chem., 2016, 32(4):567-574
       

    28. [28]

      Deng J J, Xu S D, Hu W K, Xun X J, Zheng L Y, Su M. Biomaterials, 2018, 154:24-33  doi: 10.1016/j.biomaterials.2017.10.048

    29. [29]

      Wang K, Zhuang J L, Chen L, Xu D Z, Zhang X Y, Chen Z G, Wei Y, Zhang Y Q. Colloids Surf. B, 2017, 160:297-304  doi: 10.1016/j.colsurfb.2017.09.043

    30. [30]

      Shen H F, Shao Z W, Zhao Q F, Jin M R, Deng M, Zhong J L, Huang F, Zhu H Y, Chen F, Luo Z M. J. Colloid Interface Sci., 2020, 573:115-122  doi: 10.1016/j.jcis.2020.03.111

    31. [31]

      Cheng L, Shen S D, Shi S X, Yi Y, Wang X Y, Song G S, Wang K, Liu G, Barnhart T E, Cai W B, Liu Z. Adv. Funct. Mater., 2016, 26:2185-2197  doi: 10.1002/adfm.201504810

    32. [32]

      Zhang Y X, Zhang H, Wang Y K, Wu H X, Zeng B, Zhang Y J, Tian Q W, Yang S P. J. Mater. Chem. B, 2017, 5:1846-1855  doi: 10.1039/C6TB02137A

    33. [33]

      Li L H, Lu Y, Jiang C Y, Zhu Y, Yang X F, Hu X M, Lin Z F, Zhang Y, Peng M Y, Xia H, Mao C B. Adv. Funct. Mater., 2018, 28:1704623  doi: 10.1002/adfm.201704623

    34. [34]

      Yu G D, Liu A L, Jin H L, Chen Y Z, Yin D W, Huo R, Wang S, Wang J C. J. Phys. Chem. C, 2018, 122:3794-3800  doi: 10.1021/acs.jpcc.7b12505

    35. [35]

      Wang W N, Zhang C Y, Zhang M F, Pei P, Zhou W, Zha Z B, Shao M, Qian H S. Chem. Eng. J., 2020, 381:122630  doi: 10.1016/j.cej.2019.122630

    36. [36]

      Yang S S, Li Z L, Wang Y L, Fan X L, Miao Z H, Hu Y, Li Z, Sun Y, Besenbacher F, Yu M. ACS Appl. Mater. Interfaces, 2018, 10:1605-1615  doi: 10.1021/acsami.7b17838

    37. [37]

      Li H J, Liu J, Luo Y L, Chen S B, Liu R, Du J Z, Wang J. Nano Lett., 2019, 19(12):8947-8955  doi: 10.1021/acs.nanolett.9b03913

    38. [38]

      Ding J X, Chen J J, Gao L Q, Jiang Z G, Zhang Y, Li M Q, Xiao Q C, Lee S S, Chen X S. Nano Today, 2019, 29:100800  doi: 10.1016/j.nantod.2019.100800

    39. [39]

      Ren S S, Yang J, Ma L, Li X C, Wu W L, Liu C, He J, Liao L Y. ACS Appl. Mater. Interfaces, 2018, 10:31947-31958  doi: 10.1021/acsami.8b10564

    40. [40]

      Chen Q W, Wen J, Li H J, Xu Y Q, Liu F Y, Sun S G. Biomaterials, 2016, 106:144-166  doi: 10.1016/j.biomaterials.2016.08.022

    41. [41]

      Yang J, Xie R, Feng L L, Liu B, Lv R C, Li C X, Gai S L, He F, Yang P P, Lin J. ACS Nano, 2019, 13(11):13144-13160  doi: 10.1021/acsnano.9b05985

    42. [42]

      Zhou D, Li C F, He M Y, Ma M, Li P, Gong Y P, Ran H T, Wang Z B, Wang Z G, Zheng Y Y, Sun Y. J. Mater. Chem. B, 2016, 4:4164-4181  doi: 10.1039/C6TB00261G

    43. [43]

      Zhou M, Zhang R, Huang M A, Lu W, Song S L, Melancon M P, Tian M, Liang D, Li C. J. Am. Chem. Soc., 2010, 132(43):15351-15358  doi: 10.1021/ja106855m

    44. [44]

      Li Z L, Liu J, Hu Y, Li Z, Fan X L, Sun Y, Besenbacher F, Chen C Y, Yu M. Biomaterials, 2017, 141:284-295  doi: 10.1016/j.biomaterials.2017.06.033

    45. [45]

      Lei P P, An R, Zhang P, Yao S, Song S Y, Dong L L, Xu X, Du K M, Feng J, Zhang H J. Adv. Funct. Mater., 2017, 27:1702018  doi: 10.1002/adfm.201702018

    46. [46]

      Rabin O, Manuel-Perez J, Grimm J, Wojtkiewicz G, Weissleder R. Nat. Mater., 2006, 5:118-122  doi: 10.1038/nmat1571

    47. [47]

      Li Z L, Hu Y, Chang M L, Howard K A, Fan X L, Sun Y, Besenbacher F, Yu M. Nanoscale, 2016, 8:16005-16016  doi: 10.1039/C6NR03398A

    48. [48]

      Guha S, Shaw G K, Mitcham T M, Bouchard R R, Smith B D. Chem. Commun., 2016, 52(1):120-123

    49. [49]

      ZHAO S. Thesis for the Doctorate of University of Science and Tech-nology of China. 2020.

    50. [50]

      Song Z H, Chang Y Z, Xie H H, Yu X F, Chu P K, Chen T F. NPG Asia Mater., 2017, 9:e439-e439  doi: 10.1038/am.2017.167

    51. [51]

      Wang Y, Wu Y Y, Liu Y J, Shen J, Lv L, Li L B, Yang L C, Zeng J F, Wang Y Y, Zhang L W, Li Z, Gao M Y. Adv. Funct. Mater., 2016, 26:5335-5344  doi: 10.1002/adfm.201601341

    52. [52]

      HE L. Thesis for the Doctorate of Soochow University. 2014.

    53. [53]

      Zhao X Q, Suo H, Zhang Z Y, Zhang G, Guo C F. Ceram. Int., 2020, 46:3183-3189  doi: 10.1016/j.ceramint.2019.10.022

    54. [54]

      Chen D X, Wang F, Bi J Q, Wang W L, Wang L, Sun K N, Tang D Q, Liang Y J. Opt. Mater., 2020, 102:109827  doi: 10.1016/j.optmat.2020.109827

    55. [55]

      Lei P P, An R, Zhai X S, Yao S, Dong L L, Xu X, Du K M, Zhang M L, Feng J, Zhang H J. J. Mater. Chem. C, 2017, 5:9659-9665  doi: 10.1039/C7TC03122J

    56. [56]

      Zhao S, Tian R R, Shao B Q, Feng Y, Yuan S W, Dong L P, Zhang L, Wang Z X, You H P. Chemistry, 2020, 26:1127-1135  doi: 10.1002/chem.201904586

    57. [57]

      Huang L L, Li X, Zhang J F, Zhao Q R, Zhang M J, Liu A A, Pang D W, Xie H Y. Nano Lett., 2019, 19:8002-8009  doi: 10.1021/acs.nanolett.9b03193

    58. [58]

      Wahsner J, Gale E M, Rodriguez-Rodriguez A, Caravan P. Chem. Rev., 2019, 119(2):957-1057

    59. [59]

      Li E D, Cheng X J, Deng Y Y, Zhu J, Xu X D, Saw P E, Gu H W. Biomater. Sci., 2018, 6:1892-1898  doi: 10.1039/C8BM00336J

    60. [60]

      Wu M X, Gao J, Wang F, Yang J, Song N, Jin X Y, Mi P, Tian J, Luo J Y, Liang F, Yang Y W. Small, 2018, 14:e1704440  doi: 10.1002/smll.201704440

    61. [61]

      Luo K Y, Zhao J L, Jia C Z, Chen Y K, Zhang Z L, Zhang J, Huang M X, Wang S G. ACS Appl. Mater. Interfaces, 2020, 12(20):22650-22660  doi: 10.1021/acsami.0c05088

    62. [62]

      Badrigilan S, Shaabani B, Gharehaghaji N, Mesbahi A. Photodiagn. Photodyn. Ther., 2019, 25:504-514  doi: 10.1016/j.pdpdt.2018.10.021

    63. [63]

      Zhu W W, Liu K, Sun X Q, Wang X, Li Y G, Cheng L, Liu Z. ACS Appl. Mater. Interfaces, 2015, 7:11575-11582  doi: 10.1021/acsami.5b02510

    64. [64]

      Wu B, Lu S T, Yu H, Liao R F, Lo H, Lucie-Zafitatsimo B V, Li Y S, Zhang Y, Zhu X L, Liu H G, Xu H B, Huang S W, Cheng Z. Biomaterials, 2018, 159:37-47  doi: 10.1016/j.biomaterials.2017.12.022

    65. [65]

      Guidolin K, Zheng G. ACS Nano, 2019, 13:13620-13626  doi: 10.1021/acsnano.9b08659

    66. [66]

      Nguyen D H, Lee J S, Choi J H, Park K M, Lee Y, Park K D. Acta Biomater., 2016, 35:109-117  doi: 10.1016/j.actbio.2016.02.020

    67. [67]

      Yang Y, Wu H X, Shi B Z, Guo L L, Zhang Y J, An X, Zhang H, Yang S P. Part. Part. Syst. Char., 2015, 32:668-679  doi: 10.1002/ppsc.201400238

    68. [68]

      Zhang X D, Jing Y Q, Song S S, Yang J, Wang J Y, Xue X H, Min Y H, Park G, Shen X, Sun Y M, Jeong U. Nanomed. Nanotechnol. Biol. Med., 2017, 13:1597-1605  doi: 10.1016/j.nano.2017.02.018

    69. [69]

      Alqathami M, Blencowe A, Geso M, Ibbott G. J. Biomed. Nanotechnol., 2016, 12:464-471  doi: 10.1166/jbn.2016.2183

    70. [70]

      Mao F X, Wen L, Sun C X, Zhang S H, Wang G L, Zeng J F, Wang Y, Ma J M, Gao M Y, Li Z. ACS Nano, 2016, 10:11145-11155  doi: 10.1021/acsnano.6b06067

    71. [71]

      Hu X, Sun J H, Li F Y, Li R Q, Wu J H, He J, Wang N, Liu J N, Wang S F, Zhou F, Sun S L, Kim D, Hyeon T, Ling D S. Nano Lett., 2018, 18:1196-1204  doi: 10.1021/acs.nanolett.7b04741

    72. [72]

      Du J F, Gu Z J, Yan L, Yong Y, Yi X, Zhang X, Liu J, Wu R F, Ge C C, Chen C Y, Zhao Y L. Adv. Mater., 2017, 29:1701268  doi: 10.1002/adma.201701268

    73. [73]

      Tao W, Ji X Y, Xu X D, Islam M A, Li Z J, Chen S, Saw P R, Zhang H, Bharwani Z, Guo Z L, Shi J J, Farokhzad O. Angew. Chem. Int. Ed., 2017, 56:11896-11900  doi: 10.1002/anie.201703657

    74. [74]

      Abadeer N S, Murphy C J. J. Phys. Chem. C, 2016, 120(9):4691-4716  doi: 10.1021/acs.jpcc.5b11232

    75. [75]

      Yu X J, Li A, Zhao C Z, Yang K, Chen X Y, Li W W. ACS Nano, 2017, 11:3990-4001  doi: 10.1021/acsnano.7b00476

    76. [76]

      Yu N, Wang Z J, Zhang J L, Liu Z X, Zhu B, Yu J, Zhu M F, Peng C, Chen Z G. Biomaterials, 2018, 161:279-291  doi: 10.1016/j.biomaterials.2018.01.047

    77. [77]

      Liu J, Zheng X P, Yan L, Zhou L J, Tian G, Yin W Y, Wang L M, Liu Y, Hu Z B, Gu Z J, Chen C Y, Zhao Y L. ACS Nano, 2015, 9:696-707  doi: 10.1021/nn506137n

    78. [78]

      Cheng Y, Chang Y, Feng Y L, Jian H, Tang Z H, Zhang H Y. Angew. Chem. Int. Ed., 2018, 57:246-251  doi: 10.1002/anie.201710399

    79. [79]

      Dou R X, Du Z, Bao T, Dong X H, Zheng X P, Yu M, Yin W Y, Dong B B, Yan L, Gu Z J. Nanoscale, 2016, 8:11531-11542  doi: 10.1039/C6NR01543C

    80. [80]

      Xiao Z Y, Xu C T, Jiang X H, Zhang W L, Peng Y X, Zou R J, Huang X J, Liu Q, Qin Z Y, Hu J Q. Nano Res., 2016, 9:1934-1947  doi: 10.1007/s12274-016-1085-y

    81. [81]

      Xie H H, Liu M Q, You B H, Luo G H, Chen Y, Liu B L, Jiang Z Y, Chu P K, Shao J D, Yu X F. Small, 2019, 16(1):e1905208

    82. [82]

      Wang S G, Li X, Chen Y, Cai X J, Yao H L, Gao W, Zheng Y Y, An X, Shi J L, Chen H R. Adv. Mater., 2015, 27:2775-2782  doi: 10.1002/adma.201500870

    83. [83]

      Badrigilan S, Choupani J, Khanbabaei H, Hoseini-Ghahfarokhi M, Webster T J, Tayebi L. Adv. Healthcare Mater., 2020, 9:e1901695  doi: 10.1002/adhm.201901695

    84. [84]

      Zhang C, Ren J, Hua J S, Xia L Y, He J, Huo D, Hu Y. ACS Appl. Mater. Interfaces, 2018, 10:1132-1146  doi: 10.1021/acsami.7b16000

    85. [85]

      Zeng L W, Zhao H, Zhu Y D, Chen S P, Zhang Y S, Wei D, Sun J, Fan H S. J. Mater. Chem. B, 2020, 8:4093-4105  doi: 10.1039/D0TB00080A

    86. [86]

      Guo Z, Zhu S, Yong Y, Zhang X, Dong X H, Du J F, Xie J N, Wang Q, Gu Z J, Zhao Y L. Adv. Mater., 2017, 29:1704136  doi: 10.1002/adma.201704136

    87. [87]

      Li M Q, Song W T, Tang Z H, Lv S X, Lin L, Sun H, Li Q S, Yang Y, Hong H, Chen X S. ACS Appl. Mater. Interfaces, 2013, 5:1781-1792  doi: 10.1021/am303073u

    88. [88]

      Li Z L, Liu J, Hu Y, Howard K A, Li Z, Fan X L, Chang M L, Sun Y, Besenbacher F, Chen C Y, Yu M. ACS Nano, 2016, 10:9646-9658  doi: 10.1021/acsnano.6b05427

    89. [89]

      Li Z, Li Z L, Sun L, Du B S, Wang Y L, Zhao G Y, Yu D F, Yang S S, Sun Y, Yu M. Part. Part. Syst. Char., 2018, 35:1700337  doi: 10.1002/ppsc.201700337

    90. [90]

      Wang D D, Yao Y Z, He J K, Zhong X Y, Li B S, Rao S Y, Yu H T, He S C, Feng X Y, Xu T, Yang B, Yong T Y, Gan L, Hu J, Yang X L. Adv. Sci., 2019, 7(3):1901293

    91. [91]

      Zhou S M, Ma D K, Zhang S H, Wang W, Chen W, Yu K, Huang S M. Nanoscale, 2016, 8:1374-1382  doi: 10.1039/C5NR06041A

    92. [92]

      Long T, Chen Q S, Yu W J, Zhang Y S. Min. Mag., 2015, 25:11-15

    93. [93]

      Badrigilan S, Shaabani B, Aghaji N G, Mesbahi A. Int. J. Nanosci., 2018, 19:1850043

    94. [94]

      Kinsella J M, Jimenez R E, Karmali P P, Rush A M, Kotamraju V R, Gianneschi N C, Ruoslahti E, Stupack D, Sailor M J. Angew. Chem. Int. Ed., 2011, 50:12308-12311
       

    95. [95]

      Liu Y M, Zhuang J, Zhang X H, Le C, Zhu N, Yang L C, Wang Y, Chen T, Wang Y Y, Zhang L W. Toxicol. Lett., 2017, 275:39-48
       

    96. [96]

      Hwang Y C, Lee S H, Hwang I N, Kang I C, Kim M S, Kim S H, Son H H, Oh W M. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod, 2009, 107(3):e96-e102
       

  • 加载中
    1. [1]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    2. [2]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    3. [3]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    4. [4]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    5. [5]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    6. [6]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    7. [7]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    8. [8]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    9. [9]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    10. [10]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    11. [11]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    12. [12]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    13. [13]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    14. [14]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    15. [15]

      Fa Wang Yu Chen Hui Chao . Ruthenium(II) Complexes as Photoactivated Chemo-Prodrugs for Hypoxic Tumor Therapy. University Chemistry, 2025, 40(7): 200-212. doi: 10.12461/PKU.DXHX202410024

    16. [16]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    17. [17]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    18. [18]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    19. [19]

      Pengcheng YanPeng WangJing HuangZhao MoLi XuYun ChenYu ZhangZhichong QiHui XuHenan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 2309047-0. doi: 10.3866/PKU.WHXB202309047

    20. [20]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

Metrics
  • PDF Downloads(54)
  • Abstract views(4005)
  • HTML views(1103)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return