Citation: ZHANG Ke, WANG Hui-Sheng, YU Ling-Yan, CHEN Yong, PAN Zhi-Quan. Research Progress and Prospect on the First Series Transition Metal-Dy Single Molecule Magnets[J]. Chinese Journal of Inorganic Chemistry, ;2020, 36(12): 2205-2226. doi: 10.11862/CJIC.2020.264 shu

Research Progress and Prospect on the First Series Transition Metal-Dy Single Molecule Magnets

  • Corresponding author: WANG Hui-Sheng, wangch198201@163.com
  • Received Date: 28 June 2020
    Revised Date: 2 October 2020

Figures(20)

  • Among the first series transition metal (TM) ions, not only the paramagnetic TM ions (such as Cr, Mn/ Mn, Fe/Fe, Co, Ni and Cu) but also diamagnetic TM ions (such as Co and Zn) can assemble with Dy to form the TM-Dy single molecule magnets (TM-Dy SMMs). In this paper, we survey most of the TM-Dy complexes with SMM behavior. For the TM-Dy SMMs, two interesting phenomena should be emphasized on. One is some Cr-Dy complexes possessing relatively high blocking temperature (TB) and large coercivities, which could be ascribed to the strong magnetic couplings between Cr and Dy ions (|J|>10 cm-1). Another is the Fe2-Dy complex with the energy barrier of 319 cm-1 (459 K), which is high among the TM-Dy SMMs. The reason might be that the axial symmetry of the coordination of Dy ion is high (D5h). Additionally, ab initio calculations indicate the excited state also possess high axial symmetry. Besides the Cr-Dy and Fe2-Dy complexes, other TM-Dy SMMs usually exhibits relatively low energy barriers, which may be due to the weak magnetic interactions between paramagnetic TM ions and Dy ions. To elimate the effect of the weak magnetic couplings on the relaxation behavior, the study of the DTM-Dy SMMs (DTM=diamagnetic the first series transition metal ions such as Co and Zn) has been received wide attention and their number is dramatically increasing. For the Zn-Dy SMMs, the number of the Zn2Dy trinuclear complexes is larger than that of other Zn-Dy complexes, indicating that the Zn2Dy received more attention. The reason might be that the coordination geometry of the Dy in the Zn2Dy complexes can be more easily modulated. Finally, we provided some reseach thoughts for further improving the SMM performance of the TM-Dy complexes; the most important thoughts are that the axial symmetry of the coordination geometries of Dy ions and the distribution of charge density of Dy ions in TM-Dy complexes should be controlled. For Dy in the TM-Dy complexes, the electrostatic repulsion between the Dy ground-mJ charge density and the ligand charge density should be minimized.
  • 加载中
    1. [1]

      Pan Y Z, Hua Q Y, Lin L S, et al. Inorg. Chem. Front., 2020, 7(12):2335-2342  doi: 10.1039/D0QI00326C

    2. [2]

      Sessoli R, Tsai H L, Schake A R, et al. J. Am. Chem. Soc., 1993, 115(5):1804-1816  doi: 10.1021/ja00058a027

    3. [3]

      Lin P H, Burchell T J, Clerac R, et al. Angew. Chem. Int. Ed., 2008, 47(46):8848-8851  doi: 10.1002/anie.200802966

    4. [4]

      Wang H S, Long Q Q, Hu Z B, et al. Dalton Trans., 2019, 48(35):13472-13482  doi: 10.1039/C9DT02638J

    5. [5]

      WANG Hui-Sheng, YUE Lin, PAN Min, et al. Chinese J. Inorg. Chem., 2016, 32(1): 153-160
       

    6. [6]

      Wang H S, Song Y. Inorg. Chem. Commun., 2013, 35:86-88  doi: 10.1016/j.inoche.2013.05.016

    7. [7]

      Murugesu M, Habrych M, Wernsdorfer W, et al. J. Am. Chem. Soc., 2004, 126(15):4766-4767  doi: 10.1021/ja0316824

    8. [8]

      Stamatatos T C, Abboud K A, Wernsdorfer W, et al. Angew. Chem. Int. Ed., 2007, 46(6):902-906

    9. [9]

      Tasiopoulos A J, Vinslava A, Wernsdorfer W, et al. Angew. Chem. Int. Ed., 2004, 43(16):2117-2121  doi: 10.1002/anie.200353352

    10. [10]

      Abbasi P, Quinn K, Alexandropoulos D I, et al. J. Am. Chem. Soc., 2017, 139(44):15644-15647  doi: 10.1021/jacs.7b10130

    11. [11]

      Stamatatos T C, Abboud K A, Wernsdorfer W, et al. Angew. Chem. Int. Ed., 2006, 45(25):4134-4137  doi: 10.1002/anie.200600691

    12. [12]

      Ako A M, Hewitt I J, Mereacre V, et al. Angew. Chem. Int. Ed., 2006, 118(30):5048-5051  doi: 10.1002/ange.200601467

    13. [13]

      Milios C J, Vinslava A, Wernsdorfer W, et al. J. Am. Chem. Soc., 2007, 129(10):2754-2755  doi: 10.1021/ja068961m

    14. [14]

      Waldmann O. Inorg. Chem., 2007, 46(24):10035-10037  doi: 10.1021/ic701365t

    15. [15]

      Ruiz E, Cirera J, Cano J, et al. Chem. Commun., 2008(1):52-54  doi: 10.1039/B714715E

    16. [16]

      Neese F, Pantazis D A. Faraday Discuss., 2011, 148:229-238  doi: 10.1039/C005256F

    17. [17]

      Kido T, Ikuta Y, Sunatsuki Y, et al. Inorg. Chem., 2003, 42(2):398-408  doi: 10.1021/ic026045d

    18. [18]

      Guo F S, Day B M, Chen Y C, et al. Science, 2018, 362(6421):1400-1403  doi: 10.1126/science.aav0652

    19. [19]

      Rinck J, Novitchi G, Van den Heuvel W, et al. Angew. Chem. Int. Ed., 2010, 49(41):7583-7587  doi: 10.1002/anie.201002690

    20. [20]

      Langley S K, Forsyth C M, Moubaraki B, et al. Dalton Trans., 2015, 44(3):912-915  doi: 10.1039/C4DT03100H

    21. [21]

      Thuesen C A, Pedersen K S, Schau-Magnussen M, et al. Dalton Trans., 2012, 41(37):11284-11292  doi: 10.1039/c2dt31302b

    22. [22]

      Langley S K, Wielechowski D P, Vieru V, et al. Angew. Chem. Int. Ed., 2013, 52(46):12014-12019  doi: 10.1002/anie.201306329

    23. [23]

      Langley S K, Le C, Ungur L, et al. Inorg. Chem., 2015, 54(7):3631-3642  doi: 10.1021/acs.inorgchem.5b00219

    24. [24]

      Langley S K, Wielechowski D P, Moubaraki B, et al. Chem. Commun., 2016, 52(73):10976-10979  doi: 10.1039/C6CC06152D

    25. [25]

      Xiang H, Lu W G, Zhang W X, et al. Dalton Trans., 2013, 42(4):867-870  doi: 10.1039/C2DT32651E

    26. [26]

      Car P E, Favre A, Caneschi A, et al. Dalton Trans., 2015, 44(36):15769-15773  doi: 10.1039/C5DT02459E

    27. [27]

      Vignesh K R, Soncini A, Langley S K, et al. Nat. Commun., 2017, 8:1023  doi: 10.1038/s41467-017-01102-5

    28. [28]

      Chen S H, Mereacre V, Zhao Z Y, et al. Dalton Trans., 2018, 47(22):7456-7462  doi: 10.1039/C8DT01289J

    29. [29]

      Ako A M, Mereacre V, Clerac R, et al. Chem. Commun., 2009(5):544-546  doi: 10.1039/B814614D

    30. [30]

      Li X L, Min F Y, Wang C, et al. Dalton Trans., 2015, 44(7):3430-3438  doi: 10.1039/C4DT03713H

    31. [31]

      Lin P H, Tsui E Y, Habib F, et al. Inorg. Chem., 2016, 55(12):6095-6099  doi: 10.1021/acs.inorgchem.6b00630

    32. [32]

      Wang H S, Yang F J, Long Q Q, et al. Dalton Trans., 2016, 45(45):18221-18228  doi: 10.1039/C6DT02945K

    33. [33]

      Akhtar M N, Lan Y, Aldamen M A, et al. Dalton Trans., 2018, 47(10):3485-3495  doi: 10.1039/C7DT04304J

    34. [34]

      Vignesh K R, Langley S K, Moubaraki B, et al. Inorg. Chem., 2018, 57(3):1158-1170  doi: 10.1021/acs.inorgchem.7b02608

    35. [35]

      Li M Y, Lan Y H, Ako A M, et al. Inorg. Chem., 2010, 49(24):11587-11594  doi: 10.1021/ic101754g

    36. [36]

      Vignesh K R, Langley S K, Moubaraki B, et al. Chem. Eur. J., 2015, 21(46):16364-16369  doi: 10.1002/chem.201503424

    37. [37]

      Schmidt S F M, Merkel M P, Kostakis G E, et al. Dalton Trans., 2017, 46(45):15661-15665  doi: 10.1039/C7DT03149A

    38. [38]

      Tziotzi T G, Kalofolias D A, Tzimopoulos D I, et al. Dalton Trans., 2015, 44(13):6082-6088  doi: 10.1039/C5DT00300H

    39. [39]

      Liu J L, Wu J Y, Chen Y C, et al. Angew. Chem. Int. Ed., 2014, 53(47):12966-12970  doi: 10.1002/anie.201407799

    40. [40]

      Chen S H, Mereacre V, Anson C E, et al. Dalton Trans., 2016, 45(22):9336-9344  doi: 10.1039/C6DT01364C

    41. [41]

      Schmidt S F. M, Koo C, Mereacre V, et al. Inorg. Chem., 2017, 56(9):4796-4806

    42. [42]

      Han H T, Li X L, Zhu X F, et al. Eur. J. Inorg. Chem., 2017(41):4879-4883

    43. [43]

      Li J, Wei R M, Pu T C, et al. Inorg. Chem. Front., 2017, 4(1):114-122

    44. [44]

      Peng Y, Mereacre V, Anson C E, et al. Dalton Trans., 2017, 46(16):5337-5343  doi: 10.1039/C7DT00548B

    45. [45]

      De Souza M S, Briganti M, Reis S G, et al. Inorg. Chem., 2019, 58(3):1976-1987

    46. [46]

      Huang G Z, Ruan Z Y, Zheng J Y, et al. Sci. China Chem., 2018, 61(11):1399-1404  doi: 10.1007/s11426-018-9310-y

    47. [47]

      Chandrasekhar V, Bag P, Kroener W, et al. Inorg. Chem., 2013, 52(22):13078-13086  doi: 10.1021/ic4019025

    48. [48]

      Zhao F H, Li H, Che Y X, et al. Inorg. Chem., 2014, 53(18):9785-9799  doi: 10.1021/ic501374q

    49. [49]

      Jiang L, Liu Y, Liu X, et al. Dalton Trans., 2017, 46(37):12558-12573  doi: 10.1039/C7DT02351K

    50. [50]

      Pei S M, Hu Z B, Chen Z L, et al. Dalton Trans., 2018, 47(6):1801-1807  doi: 10.1039/C7DT04003B

    51. [51]

      Mahapatra P, Koizumi N, Kanetomo T, et al. New J. Chem., 2019, 43(2):634-643  doi: 10.1039/C8NJ03512A

    52. [52]

      Wang H S, Yang F J, Long Q Q, et al. New J. Chem., 2017, 41(13):5884-5892  doi: 10.1039/C7NJ00459A

    53. [53]

      Chen Y, Long Q Q, Hu Z B, et al. New J. Chem., 2019, 43(21):8101-8108  doi: 10.1039/C9NJ00892F

    54. [54]

      Wu J F, Zhao L, Zhang L, et al. Angew. Chem. Int. Ed., 2016, 55(50):15574-15578  doi: 10.1002/anie.201609539

    55. [55]

      Kühne I A, Magnani N, Mereacre V, et al. Chem Commun., 2014, 50(15):1882-1885  doi: 10.1039/c3cc46458j

    56. [56]

      Vignesh K R, Langley S K, Murray K S, et al. Inorg. Chem., 2017, 56(5):2518-2532  doi: 10.1021/acs.inorgchem.6b02720

    57. [57]

      Zou H H, Sheng L B, Liang F P, et al. Dalton Trans., 2015, 44(42):18544-18552  doi: 10.1039/C5DT03368C

    58. [58]

      Zhang H F, Liu R, Zhang J, et al. CrystEngComm, 2016, 18(42):8246-8252  doi: 10.1039/C6CE01589A

    59. [59]

      Wang H S, Yin C L, Hu Z Bo, et al. Dalton Trans., 2019, 48(27):10011-10022  doi: 10.1039/C9DT00774A

    60. [60]

      Xu G F, Gamez P, Tang J K, et al. Inorg. Chem., 2012, 51(10):5693-5698  doi: 10.1021/ic300126q

    61. [61]

      Vignesh K R, Langley S K, Murray K S, et al. Chem. Eur. J., 2017, 23(7):1654-1666  doi: 10.1002/chem.201604835

    62. [62]

      Liu J L, Chen Y C, Zheng Y Z, et al. Chem. Sci., 2013, 4(8):3310-3316  doi: 10.1039/c3sc50843a

    63. [63]

      Sun W B, Yan P F, Jiang S D, et al. Chem. Sci., 2016, 7(1):684-691  doi: 10.1039/C5SC02986D

    64. [64]

      Oyarzabal I, Ruiz J, Ruiz E, et al. Chem. Commun., 2015, 51(62):12353-12356  doi: 10.1039/C5CC04495B

    65. [65]

      Costes J P, Titos-Padilla S, Oyarzabal I, et al. Chem. Eur. J., 2015, 21(44):15785-15796  doi: 10.1002/chem.201501500

    66. [66]

      Liu C M, Zhang D Q, Su J B, et al. Inorg. Chem., 2018, 57(17):11077-11086  doi: 10.1021/acs.inorgchem.8b01653

    67. [67]

      Amjad A, Madalan A M, Andruh M, et al. Chem. Eur. J., 2016, 22(36):12849-12858  doi: 10.1002/chem.201601996

    68. [68]

      Yin C L, Hu Z B, Long Q Q, et al. Dalton Trans., 2019, 48(2):512-522  doi: 10.1039/C8DT03849J

    69. [69]

      Liu J L, Chen Y C, Tong M L. Chem. Soc. Rev., 2018, 47(7):2431-2453  doi: 10.1039/C7CS00266A

    70. [70]

      Rinehart J D, Long J R. Chem. Sci., 2011, 2(11):2078-2085  doi: 10.1039/c1sc00513h

    71. [71]

      Crawford V H, Richardson H W, Wasson J R, et al. Inorg. Chem., 1976, 15(9):2107-2110  doi: 10.1021/ic50163a019

  • 加载中
    1. [1]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    2. [2]

      Ming Li Zhaoyin Li Mengzhu Liu Shaoxiang Luo . Unveiling the Artistry of Mordant Dyeing: The Coordination Chemistry Beneath. University Chemistry, 2024, 39(5): 258-265. doi: 10.3866/PKU.DXHX202311085

    3. [3]

      Quanguo Zhai Peng Zhang Wenyu Yuan Ying Wang Shu'ni Li Mancheng Hu Shengli Gao . Reconstructing the “Fundamentals of Coordination Chemistry” in Inorganic Chemistry Course. University Chemistry, 2024, 39(11): 117-130. doi: 10.12461/PKU.DXHX202403065

    4. [4]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    5. [5]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    6. [6]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    7. [7]

      Gonglan Ye Xia Yin Feng Xu Peng Yang Yingpeng Wu Huilong Fei . Innovations in “Four-in-One” Inorganic Chemistry Education. University Chemistry, 2024, 39(8): 136-141. doi: 10.3866/PKU.DXHX202401071

    8. [8]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

    9. [9]

      Chengbin Gong Guona Zhang Qian Tang Hong Lei Ling Kong Wenshan Ren . Development of a Practical Teaching System for the Applied Chemistry Major Emphasizing “Industry-Education Integration, University-Enterprise Cooperation, and Multi-Dimensional Combination”. University Chemistry, 2024, 39(6): 220-225. doi: 10.3866/PKU.DXHX202309104

    10. [10]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    11. [11]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    12. [12]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    13. [13]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    14. [14]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    15. [15]

      Li Zhou Dongyan Tang Yunchen Du . Focusing on the Cultivation of Outstanding Talents: A “Five in One” Approach to Promoting the Construction of Chemical Experimental and Practical Teaching System. University Chemistry, 2024, 39(7): 121-128. doi: 10.12461/PKU.DXHX202405037

    16. [16]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    17. [17]

      Jin Jia Shangda Jiang . Is the z Axis Special in Atomic Structure?. University Chemistry, 2024, 39(6): 400-404. doi: 10.12461/PKU.DXHX202403091

    18. [18]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    19. [19]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    20. [20]

      Pingwei Wu . Application of Diamond Software in Simplex Teaching. University Chemistry, 2024, 39(3): 118-121. doi: 10.3866/PKU.DXHX202311043

Metrics
  • PDF Downloads(59)
  • Abstract views(2590)
  • HTML views(928)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return