Citation: LIU Xue-Fen, YU Zhe-Jian, XU Liang-Xuan, CHEN Hao, WANG Tian-Qi, YANG Peng, LUO Shu-Ping. Fluoric Phenanthrolines and Their Heteroleptic Copper Complexes: Synthesis and Application in Photocatalytic Hydrogen Evolution from Water[J]. Chinese Journal of Inorganic Chemistry, ;2020, 36(11): 2023-2030. doi: 10.11862/CJIC.2020.248 shu

Fluoric Phenanthrolines and Their Heteroleptic Copper Complexes: Synthesis and Application in Photocatalytic Hydrogen Evolution from Water

  • Corresponding author: YANG Peng, yangpenghz@hznu.edu.cn
  • Received Date: 24 December 2019
    Revised Date: 29 September 2020

Figures(7)

  • A series of novel bidentate ligands of fluoro phenanthrolines were designed and synthesized, which could formulate a series of heteroleptic copper photosensitizers CP1~CP4 with Cu(MeCN)4PF6 and Xantphos as P ligand. The photosensitive activities of this copper complex were researched in water reduction system, and the turnover number (TON) of hydrogen evolution was up to 896. The absorption spectrum and fluorescence emission spectrum of the copper complexes indicated the good stability in solution. The oxidation quenching is the main quenching pathway in water reduction system, which was confirmed by the fluorescence quenching experiments. Moreover, a preliminary explanation and discussion of the structure-activity relationship and the mechanism of photocatalytic hydrogen evolution from water were carried out.
  • 加载中
    1. [1]

      (a) Hisatomi T, Kubota J, Domen K. Chem. Soc. Rev., 2014, 43: 7520-7535
      (b)Berardi S, Drouet S, Llobet A, et al. Chem. Soc. Rev., 2014, 43: 7501-7519

    2. [2]

      Esswein A J, Nocera D G. Chem. Rev., 2007, 107(10):4022-4047  doi: 10.1021/cr050193e

    3. [3]

      (a) Kalyanasundaram K, Kiwi J, Grätzel M. Helv. Chim. Acta, 1978, 61: 2720-2730
      (b)Kirch M, Lehn J M, Sauvage J P. Helv. Chim. Acta, 1979, 62: 1345-1384
      (c)Kiwi J, Gratzel M. J. Am. Chem. Soc., 1978, 100(20): 6314-6320

    4. [4]

      (a) Abbotto A, Manfredi N. Dalton Trans., 2011, 40: 12421-12438
      (b)Ganga G L, Puntoriero F, Campagna S, et al. Faraday Discuss., 2012, 155: 177-190
      (c)Deponti E, Natali M. Dalton Trans., 2016, 45: 9136-914
      (d)Lin H, Liu D, Wang X X, et al. Phys. Chem. Chem. Phys., 2015, 17: 10726-10736
      (e)Na Y, Wei P C, Zhou L. Chem. Eur. J., 2016, 22: 10365-10368

    5. [5]

      (a) Jiang W N, Liu J H, Li C. Inorg. Chem. Commun., 2012, 16: 81-85
      (b)Zhou R W, Manbeck G F, Brewer K J, et al. Chem. Commun., 2015, 51: 12966-12969
      (c)Mengele A K, Kaufhold S, Rau S, et al. Dalton Trans., 2016, 45: 6612-6618

    6. [6]

      (a) Du P W, Knowles K, Eisenberg R. J. Am. Chem. Soc., 2008, 130(38): 12576-12577
      (b)Wang C J, Chen Y, Fu W F. Dalton Trans., 2015, 44: 14483-14493
      (c)Whang D R, Park S Y. ChemSusChem, 2015, 8: 3204-3207
      (d)Kitamoto K, Sakai K. Chem. Commun., 2016, 52: 1385-1388

    7. [7]

      (a) Disalle B F, Bernhard S. J. Am. Chem. Soc., 2011, 133(31): 11819-11821
      (b)Gärtner F, Denurra S, Beller M, et al. Chem. Eur. J., 2012, 18: 3220-3225
      (c)Lu Y, McGoldrick N, Murphy F, et al. Chem. Eur. J., 2016, 22(32): 11349-11356
      (d)Xu D N, Chu Q Q, Fang B Z, et al. J. Catal., 2015, 325: 118-127

    8. [8]

      Zhang X J, Jin Z L, Li Y X, et al. J. Phys. Chem. C, 2009, 113(6):2630-2635  doi: 10.1021/jp8085717

    9. [9]

      (a)Probst B, Guttentag M, Rodenberg A, et al. Inorg. Chem., 2011,50(8):3404-3412
      (b)Du P, Schneider J, Li F, et al. J. Am. Chem. Soc., 2008, 130(15):5056-5058

    10. [10]

      Horiuchi Y, Toyao T, Saito M, et al. J. Phys. Chem. C, 2012, 116(39):20848-20853  doi: 10.1021/jp3046005

    11. [11]

      Cahiez G, Duplais C, Buendia J. Chem. Rev., 2009, 109(3):1434-1476  doi: 10.1021/cr800341a

    12. [12]

      (a) Zhang W, Hong J D, Zheng J W, et al. J. Am. Chem. Soc.,2011, 133(51): 20680-20683
      (b)Lazarides T, Mccormick T, Du P, et al. J. Am. Chem. Soc., 2009, 131(26): 9192-9194
      (c)Mccormick T M, Calitree B, Orchard A, et al. J. Am. Chem. Soc., 2010, 132(44): 15480-15483
      (d)Chan S F, Chou M, Creutz C, et al. J. Am. Chem. Soc., 1981, 103(2): 369-379

    13. [13]

      (a) Huang G L, Shi R, Zhu Y F. J. Mol. Catal. A: Chem., 2011, 348: 100-105
      (b)He X D, Yin L X, Li Y Q. New J. Chem., 2019, 43: 6577-6586
      (c)Gu L Y, Lei Y, Luo J, et al. ACS Appl. Mater. Interfaces., 2019, 11: 24789-24794
      (d)Yang H M, Guo M M, Hu X Y, et al. Appl. Surf. Sci., 2019, 494: 501-507

    14. [14]

    15. [15]

      Larsen A F, Ulven T. Org. Lett., 2011, 13(13):3546-3548  doi: 10.1021/ol201321z

    16. [16]

      Zhao Y F, Schwab M G, Kiersnowski A, et al. J. Mater. Chem. C, 2016, 4:4640-4646  doi: 10.1039/C6TC00780E

    17. [17]

      (a) Luo S P, Mejía E, Friedrich A, et al. Angew. Chem. Int. Ed., 2013, 52(1): 419-423
      (b)Luo S P, Chen N Y, Sun Y Y, et al. Dyes Pigm., 2016, 134: 580-585

    18. [18]

      Knorn M, Rawner T, Czerwieniec R, et al. ACS Catal., 2015, 5(9):5186-5193  doi: 10.1021/acscatal.5b01071

    19. [19]

      Yamamoto K, Kitamoto K, Yamauchi K, et al. Chem. Commun., 2015, 51(77):14516-14519  doi: 10.1039/C5CC03558A

    20. [20]

      (a) Yu Z J, Chen H, Lennox A J J, et al. Dyes Pigm., 2019, 162: 771-775
      (b)Chen H, Xu L X, Yan L J, et al. Dyes Pigm., 2020, https://doi.org/10.1016/j.dyepig.2019.108000.

    21. [21]

      (a) Krishnan C Ⅴ, Creutz C, Mahajan D, et al. Isr. J. Chem., 1982, 22: 98-106
      (b)Krishnan C Ⅴ, Sutin N. J. Am. Chem. Soc., 1981, 103: 2141-2142

    22. [22]

      Kirch M, Lehn J M, Sauvage J P. Helv. Chim. Acta, 1979, 62:1345-1384  doi: 10.1002/hlca.19790620449

  • 加载中
    1. [1]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    2. [2]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    3. [3]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    4. [4]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    5. [5]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    6. [6]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    7. [7]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    8. [8]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    9. [9]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    10. [10]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    11. [11]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    12. [12]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    13. [13]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    14. [14]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    15. [15]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    16. [16]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    17. [17]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    18. [18]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    19. [19]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    20. [20]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

Metrics
  • PDF Downloads(0)
  • Abstract views(437)
  • HTML views(48)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return