Citation: YANG An-Le, QIN Tian-Tian, FENG Xue-Lei, WANG Gui-Xian, LIANG Li-Yun. Preparation of rGO/NiCo2S4 and High-Performance Asymmetric Supercapacitors Using GO/ZIF-67 Template[J]. Chinese Journal of Inorganic Chemistry, ;2020, 36(10): 1822-1830. doi: 10.11862/CJIC.2020.200 shu

Preparation of rGO/NiCo2S4 and High-Performance Asymmetric Supercapacitors Using GO/ZIF-67 Template

  • Corresponding author: LIANG Li-Yun, liyun.liang@hust.edu.cn
  • Received Date: 11 April 2020
    Revised Date: 17 June 2020

Figures(7)

  • This study based on ZIF-67, which was grown on the surface of GO to make GO/ZIF-67 as a template. After etching by nickel nitrate, carbonizing and treating by hydrothermal with sodium sulfide, the final product of rGO/NiCo2S4 composite was obtained. X-ray diffraction (XRD), scanning electron microscope (SEM), and X-ray photoelectron spectroscopy (XPS) were used to characterize the structure and morphology of the composite which confirmed the expected product was obtained. Subsequently, the rGO/NiCo2S4 composite material was made into a positive electrode material and tested the electrochemical performance. The test results show that the rGO/NiCo2S4-1.5 h electrode material has a specific capacitance of 1 577 F·g-1 at current density of 1 A·g-1. When the current density reached 10 A·g-1, the rate performance was 86.4%. After 2 000 cycles at a current density of 10 A·g-1, the capacitance retention rate of rGO/NiCo2S4-1.5 h was 76.9%. In addition, an asymmetric capacitor of AC//rGO/NiCo2S4-1.5 h was assembled in a 6 mol·L-1 KOH electrolyte. It delivered an energy density of 33 Wh·kg-1 at a power density of 723 W·kg-1, and it remained as high as 23 Wh·kg-1 even at 7 277 W·kg-1.
  • 加载中
    1. [1]

      Wang Q H, Gao F, Xu B Y, et al. Chem. Eng. J., 2017, 327:387-396

    2. [2]

      Lukatskaya M R, Kota S, Lin Z F, et al. Nat. Energy, 2017, 2:17105

    3. [3]

      Martin W, Ralph J B. Chem. Rev., 2004, 104:4245-4270

    4. [4]

      Chen X, Lin H, Chen P, et al. Adv. Mater., 2014, 26:4444-4449

    5. [5]

      Miller J R, Simon P. Science, 2008, 321:651-652

    6. [6]

      Chhowalla M, Shin H S, Eda G, et al. Nat. Chem., 2013, 5:263-275

    7. [7]

      Feng J, Sun X, Wu C Z, et al. J. Am. Chem. Soc., 2011, 133:17832-17838

    8. [8]

      Huang J S, Sumpter B G, Meunier V, et al. Angew. Chem. Int. Ed., 2008, 47:520-524

    9. [9]

      Chang S K, Lee K T, Zainal Z, et al. Electrochim. Acta, 2012, 67:67-72

    10. [10]

      Jiang H, Zhao T, Li C Z, et al. J. Mater. Chem. A, 2011, 21:3818-3823

    11. [11]

      Shao M F, Ning F Y, Zhao Y F, et al. Chem. Mater., 2012, 24:1192-1197

    12. [12]

      Ding S J, Zhu T, Chen J S, et al. J. Mater. Chem., 2011, 21:6602-6606

    13. [13]

      Wang H L, Casalongue H S, Liang Y Y, et al. J. Am. Chem. Soc., 2010, 132:7472-7477

    14. [14]

      Chen H C, Jiang J J, Zhang L, et al. Nanoscale, 2013, 5:8879-8883

    15. [15]

      Liu G X, Zhang H Y, Li J, et al. J. Mater. Sci., 2019, 54:9666-9678

    16. [16]

      Jian S L, Hsiao L Y, Yeh M H, et al. J. Mater. Chem. A, 2019, 7:1479-1490

    17. [17]

      Guo D X, Song X M, Tan L C, et al. Chem. Eng. J., 2019, 356:955-963

    18. [18]

      Wei J, Hu Y X, Liang Y, et al. J. Mater. Chem. A, 2017, 5:10182-10189

    19. [19]

      Govindasamy M, Shanthi S, Elaiyappillai E, et al. Electrochim. Acta, 2019, 293:328-337

    20. [20]

      Liu Y, Wang Z B, Zhong Y J, et al. Adv. Funct. Mater., 2017, 27:1701229

    21. [21]

      Liu Y, Su D, Sang Z Y, et al. Electrochim. Acta, 2019, 328:135088

    22. [22]

      Huang Y Y, Shi T L, Jiang S L, et al. Sci. Rep., 2016, 6:38620-38671

    23. [23]

      Wang X, Sumboja A, Lin M, et al. Nanoscale, 2012, 4:7266-7272

    24. [24]

      Yu F Z, Chang X, Yuan H, et al. J. Mater. Chem. A, 2018, 6:5856-5861

    25. [25]

      Cai P F, Liu T, Zhang L Y, et al. Appl. Surf. Sci., 2020, 504:144501

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Jun JiangTong GuoWuxin BaiMingliang LiuShujun LiuZhijie QiJingwen SunShugang PanAleksandr L. VasilievZhiyuan MaXin WangJunwu ZhuYongsheng Fu . Modularized sulfur storage achieved by 100% space utilization host for high performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(4): 108565-. doi: 10.1016/j.cclet.2023.108565

    3. [3]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    6. [6]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    7. [7]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    8. [8]

      Xuexia LinYihui ZhouJiafu HongXiaofeng WeiBin LiuChong-Chen Wang . Facile preparation of ZIF-8/ZIF-67-derived biomass carbon composites for highly efficient electromagnetic wave absorption. Chinese Chemical Letters, 2024, 35(9): 109835-. doi: 10.1016/j.cclet.2024.109835

    9. [9]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    10. [10]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    11. [11]

      Binyang QinMengqi WangShimei WuYining LiChilin LiuYufei ZhangHaosen Fan . Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chinese Chemical Letters, 2024, 35(7): 108921-. doi: 10.1016/j.cclet.2023.108921

    12. [12]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    13. [13]

      Shuo LiXinran LiuYongjie ZhengJun MaShijie YouHeshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971

    14. [14]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    15. [15]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    16. [16]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    17. [17]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    18. [18]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    19. [19]

      Zhi WangLingpeng YanYelin HaoJingxia ZhengYongzhen YangXuguang Liu . Highly efficient and photothermally stable CDs@ZIF-8 for laser illumination. Chinese Chemical Letters, 2024, 35(10): 109430-. doi: 10.1016/j.cclet.2023.109430

    20. [20]

      Xin ZhangJunyu ChenXiang PeiLinxin YangLiang WangLuona ChenGuangmei YangXibo PeiQianbing WanJian Wang . Drug-loading ZIF-8 for modification of microporous bone scaffold to promote vascularized bone regeneration. Chinese Chemical Letters, 2024, 35(6): 108889-. doi: 10.1016/j.cclet.2023.108889

Metrics
  • PDF Downloads(18)
  • Abstract views(2787)
  • HTML views(944)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return