Citation: HE Hong-Bo, ZHANG Meng-Fan, LIU Zhen, FAN Qi-Zhe, YANG Kai, YU Chang-Lin. Preparation by F Doping and Photocatalytic Activities of BiOCl Nanosheets with Highly Exposed (001) Facets[J]. Chinese Journal of Inorganic Chemistry, ;2020, 36(8): 1413-1420. doi: 10.11862/CJIC.2020.177 shu

Preparation by F Doping and Photocatalytic Activities of BiOCl Nanosheets with Highly Exposed (001) Facets

  • Received Date: 13 April 2020
    Revised Date: 20 May 2020

Figures(9)

  • By using F doping, a series of BiOCl nanosheets with highly exposed (001) facets were synthesized by a solvothermal-calcination route. The fabricated bare BiOCl and F doped BiOCl nanosheets were characterized by some physicochemical methods, e.g. X-ray diffraction, N2 physical absorption, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy, Fourier transform infrared spectroscopy, and photoelectrochemical measurement. The results show that F doping with moderate content can promote the growth of (110) crystal plane and suppress the crystal size, inducing the for-mation of highly exposed (001) facets. Moreover, an obvious increase in surface area and surface -OH groups were obtained after F-doping. Under simulated sunlight irradiation, F doping obtained significant enhancement in the degradation of rhodamine B, and about 1.67 times increase over F1.0-BiOCl than that of bare BiOCl. Moreover, the degradation rate of F1.0-BiOCl was 1.24 times that of commercial P25(TiO2) in removal of acid orange Ⅱ. The main reasons for the increase of activity are that the exposed (001) facets induced by F-doping promoted dyes adsorption, and the separation of photo-generated electron-hole pair was also accelerated. Therefore, F-BiOCl nanosheets display superior photocatalytic performance for organic dyes degradation.
  • 加载中
    1. [1]

      He H B, Luo Z Z, Tang Z Y, et al. Appl. Surf. Sci., 2019, 490:460-468

    2. [2]

      Liu B X, Wang J S, Wu J S, et al. J. Mater. Chem. A, 2014, 2:1947-1954
       

    3. [3]

      MA Xiao-Shuai, CHEN Fan-Yun, YU Chang-Ling, et al. Chinese J. Inorg. Chem., 2020, 36(2):217-225
       

    4. [4]

      Liu Z, Tian J, Zeng D B, et al. Mater. Res. Bull., 2017, 94:298-306

    5. [5]

      Li J D, Wei L F, Yu C L, et al. Appl. Surf. Sci., 2015, 358:168-174
       

    6. [6]

      Yu C L, He H B, Liu X Q, et al. Chin. J. Catal., 2019, 40(8):1212-1221

    7. [7]

      Chen M J, Huang Y, Chu W. Chin. J. Catal., 2019, 40(5):673-680

    8. [8]

      HE Hong-Bo, XUE Shuang-Shuang, YU Chang-Lin, et al. Chinese J. Inorg. Chem., 2016, 32(4):625-632
       

    9. [9]

      Liu B X, Wang J S, Li H Y, et al. J. Nanosci. Nanotechnol., 2013, 13:4117-4122
       

    10. [10]

      ZHONG Wei, XIA Ying-Fan, ZHAI Hang-Ling, et al. Chinese J. Inorg. Chem., 2020, 36(1):40-52
       

    11. [11]

      CHEN Fan-Yun, ZHANG Meng-Di, MA Xiao-Shuai, et al. Chinese J. Inorg. Chem., 2019, 35(6):1034-1040
       

    12. [12]

      HE Hong-Bo, LUO Yi-Ming, LUO Zhuang-Zhu, et al. Prog. Chem., 2019, 31(4):561-570
       

    13. [13]

      CHEN Jian-Chai, YU Chang-Lin, LI Jia-De, et al. J. Inorg. Mater., 2015, 30(9):943-949
       

    14. [14]

      Liu G, Yu J C, Lu G Q, et al. Chem. Commun., 2011, 47(24):6763-6783
       

    15. [15]

      Dandapat A, Gnayem H, Sasson Y. Chem. Commun., 2016, 52(10):2161-2164
       

    16. [16]

      Zhang X, Wang X B, Wang L W, et al. ACS Appl. Mater. Interfaces, 2014, 6(10):7766-7772
       

    17. [17]

      Weng S X, Fang Z B, Wang Z F, et al. ACS Appl. Mater. Interfaces, 2014, 6(21):18423-18428
       

    18. [18]

      Shan L W, Wang G L, Liu L Z, et al. J. Mol. Catal. A:Chem., 2015, 406:145-151
       

    19. [19]

      Chen Y Y, Zhou Y, Dong Q M, et al. CrystEngComm, 2018, 20:7838-7850

    20. [20]

      Qi Y L, Zheng Y F, Yin H Y, et al. J. Alloys Compd., 2017, 712:535-542

    21. [21]

      Weng S X, Chen B B, Xie L Y, et al. J. Mater. Chem. A, 2013, 1(9):3068-3075
       

    22. [22]

      Yu C L, He H B, Fan Q Z, et al. Sci. Total Environ., 2019, 694:133727-133734

    23. [23]

      Di J, Xia J X, Ji M X, et al. ACS Appl. Mater. Interfaces, 2015, 7(36):20111-20123

    24. [24]

      Li Y, Tian Y Y, Zhang R F, et al. Inorg. Chim. Acta, 2016, 439:123-129
       

    25. [25]

      FANG Wen, HE Hong-Bo, XUE Shuang-Shuang, et al. J. Chin. Ceram. Soc., 2016, 44(5):711-719
       

    26. [26]

      Liu C, Yan C Y, Lin J Z, et al. J. Mater. Chem. A, 2015, 3(40):20167-20173
       

    27. [27]

      Sun M L, Zhao Q H, Du C F, et al. RSC Adv., 2015, 5(29):22740-22752
       

    28. [28]

      Xie T P, Xu L J, Liu C L, et al. Dalton Trans., 2014, 43(5):2211-2220
       

    29. [29]

      Duo F F, Wang Y W, Fan C M, et al. Mater. Charact., 2015, 99:8-16
       

    30. [30]

      Jiang H, Liu J K, Wang J D, et al. CrystEngComm, 2015, 17(29):5511-5521
       

    31. [31]

      He H B, Xue S S, Wu Z, et al. J. Mater. Res., 2016, 31(17):2598-2607
       

    32. [32]

      Li J, Sun S Y, Chen R, et al. Environ. Sci. Pollut. Res., 2017, 24:9556-9565
       

    33. [33]

      Yu C L, He H B, Zhou W Q, et al. Sep. Purif. Technol., 2019, 217:137-146

    34. [34]

      He H B, Xue S S, Wu Z, et al. Chin. J. Catal., 2016, 37(11):1841-1850
       

    35. [35]

      Ge L, Han C C. Appl. Catal. B, 2012, 117:268-274
       

    36. [36]

      Fu H B, Pan C S, Yao W Q, et al. J. Phys. Chem. B, 2005, 109:22432-22439
       

  • 加载中
    1. [1]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    2. [2]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    5. [5]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    6. [6]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    7. [7]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    8. [8]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    9. [9]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    10. [10]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    11. [11]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    12. [12]

      Cunjun LiWencong LiuXianlei ChenLiang LiShenyu LanMingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652

    13. [13]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    14. [14]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    15. [15]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    16. [16]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    17. [17]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    18. [18]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    19. [19]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    20. [20]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

Metrics
  • PDF Downloads(17)
  • Abstract views(2117)
  • HTML views(628)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return