Citation: DU Ci, CHU Zeng-Yong, HU Tian-Jiao, WU Wen-Jian, LI Xiao-Dong. Effect of Magnetic Field on Tetraphenylporphyrin and Its Co(Ⅱ)/Zn(Ⅱ) Coordination Compounds[J]. Chinese Journal of Inorganic Chemistry, ;2020, 36(7): 1291-1297. doi: 10.11862/CJIC.2020.156 shu

Effect of Magnetic Field on Tetraphenylporphyrin and Its Co(Ⅱ)/Zn(Ⅱ) Coordination Compounds

  • Corresponding author: LI Xiao-Dong, xdli0153@sina.com
  • Received Date: 18 November 2019
    Revised Date: 27 March 2020

Figures(10)

  • To investigate the effect of strong magnetic field on the chemical reactions and properties of biological important molecules, as a part of this research, tetra-phenyl porphyrin and its metalloporphyrin coordination reaction were chosen to extended study. The TPP crystals, obtained at different magnetic field, were measured by X-ray powder diffraction. The yields of cobalt porphyrin (CoTPP) and zinc porphyrin (ZnTPP) at different magnetic field intensities were determined by UV -Vis spectrophotometer. The conversion rates of cobalt porphyrin (CoTPP) and zinc porphyrin (ZnTPP) in different magnetic fields, as well as the reaction kinetics of Co2+ and Zn2+ coordination with TPP were analyzed, respectively. The results show that the crystallinity of TPP increases with the intensity of magnetic field. The yield and reaction rate of CoTPP and ZnTPP decreased with the increase of magnetic field intensity, but the magnetic field intensity made no effect on the reaction kinetics. According to the research results, high magnetic field is beneficial to the crystallization of tetraphenyl porphyrin, and the orientation of tetraphenyl porphyrin perpendicular to the magnetic field in the solution is the main reason for the decrease of coordination reaction rate. With the increase of magnetic field intensity, the orientation degree of tetraphenyl porphyrin increases.
  • 加载中
    1. [1]

      [1] Zhang Y B, Tan Y W, Stormer H L, et al. Nature, 2005, 438(7065):201-204  doi: 10.1038/nature04235

    2. [2]

      Novoselov K S, Geim A K, Morozov S V, et al. Nature, 2005, 438(7065):197-200  doi: 10.1038/nature04233

    3. [3]

      Schaefer W H, Harris T M, Guengerich F P. Biochemistry, 1985, 24(13):3254-3263  doi: 10.1021/bi00334a027

    4. [4]

      Traylor T G, Koga N, Deardurff L A. J. Am. Chem. Soc., 1985, 107(23):6504-6510  doi: 10.1021/ja00309a014

    5. [5]

      Shikama K, Matsuoka A. Eur. J. Biochem., 2003, 270(20):4041-4051  doi: 10.1046/j.1432-1033.2003.03791.x

    6. [6]

      Chakraborti A S. Mol. Cell. Biochem., 2003, 253(1/2):49-54  doi: 10.1023/A:1026097117057

    7. [7]

      Yonetani T. J. Biol. Chem., 1966, 241(11):2562-2571
       

    8. [8]

      Hayashi T, Takimura T, Ogoshi H. J. Am. Chem. Soc., 1995, 117(46):11606-11607  doi: 10.1021/ja00151a037

    9. [9]

      Li J R, Sculley J, Zhou H C. Chem. Rev., 2012, 112(2):869932
       

    10. [10]

      Horcajada P, Gref R, Baati T, et al. Chem. Rev., 2012, 112:1232-1268  doi: 10.1021/cr200256v

    11. [11]

      Stone A, Fleischer E B. J. Am. Chem. Soc., 1968, 90(11):2735-2748  doi: 10.1021/ja01013a001

    12. [12]

      WANG Cheng, Zhang T, Lin W B. Chem. Rev., 2011, 112(2):1084-1104
       

    13. [13]

      Papadopoulos A G, Charistos N D, Muñoz-Castro A. ChemPhysChem, 2017, 189(12):1499-1502
       

    14. [14]

      Makarkina A V, Golotvin S S, Chertkov V A. Chem. Heterocycl. Compd., 1995, 31(9):1060-1064  doi: 10.1007/BF01165051

    15. [15]

      Yoon D K, Lee S R, Kim Y H, et al. Physica B, 2006, 385386(part 1):801-803

    16. [16]

      Kaneko Y, Onodera T, Kasai H, et al. J. Mater. Chem., 2005, 15(2):253-255  doi: 10.1039/b412351d

    17. [17]

      Peeks M D, Claridge T D W, Anderson H L. Nature, 2016, 541(7636):200-203
       

    18. [18]

      Bothner-By A A, Gayathri C, van Zijl P C M, et al. Magn. Reson. Chem., 1985, 23(11):935-938  doi: 10.1002/mrc.1260231111

    19. [19]

      Waliszewski P, Skwarek R, Jeromin L, et al. J. Photochem. Photobiol., 1999, 52(1/2/3):137-140
       

    20. [20]

      Gurinovich V V, Tsvirko M P. J. Appl. Spectrosc., 2000, 67(6):1016-1022  doi: 10.1023/A:1004180623365

    21. [21]

      Morii N, Kido G, Konakahara T, et al. Biomacromolecules, 2005, 6(6):3259-3266  doi: 10.1021/bm050302z

    22. [22]

      Adler A D, Sklar L, Longo F R, et al. J. Heterocycl. Chem., 1968, 5(5):669-678  doi: 10.1002/jhet.5570050513

    23. [23]

      WANG Zhou-Feng, DENG Wen-Li. Prog. Chem., 2007(4):86-92
       

    24. [24]

      Kano K, Fukuda K, Wakami H, et al. J. Am. Chem. Soc., 2000, 122(31):7494-7502  doi: 10.1021/ja000738g

  • 加载中
    1. [1]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    2. [2]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    3. [3]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    4. [4]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    5. [5]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    6. [6]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    7. [7]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    8. [8]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    9. [9]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    10. [10]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

Metrics
  • PDF Downloads(8)
  • Abstract views(675)
  • HTML views(227)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return