Citation: TANG Juan, SUN Jing, ZHOU Chen, ZHAO Ying, GUO Xin, YIN Yu-Ting. Effects of Rare Earths (Gd3+, La3+) on Fluorescence and Temperature Sensitivity of Eu(p-MOBA)3phen/PMMA[J]. Chinese Journal of Inorganic Chemistry, ;2020, 36(8): 1485-1491. doi: 10.11862/CJIC.2020.145 shu

Effects of Rare Earths (Gd3+, La3+) on Fluorescence and Temperature Sensitivity of Eu(p-MOBA)3phen/PMMA

  • Corresponding author: SUN Jing, sj-cust@126.com
  • Received Date: 7 April 2020
    Revised Date: 22 April 2020

Figures(10)

  • The different rare earth (Gd3+, La3+) doped Eu(p-MOBA)3phen probe molecules were prepared by using rare earth oxides (Eu2O3, Gd2O3, La2O3), p-methoxybenzoic acid (p-MOBA) and phenanthroline (phen). The different rare earth (Gd3+, La3+) doped Eu(p-MOBA)3phen/PMMA temperature sensitive paints (TSPs) were fabricated by mixing the probe molecules with methyl methacrylate (MMA) and initiating polymerization with benzoyl peroxide (BPO). The morphology, structure, luminescence properties of the probe molecules, and the fluorescence temperature quenching property of the TSPs were characterized by scanning electron microscopy, UV-Vis absorption spectra, infrared spectrometer and fluorescence spectra. The infrared spectrum, UV-Vis absorption spectra and scanning electron microscopy spectra show that Eu3+ was successfully coordinated with the ligands p-MOBA and phen, and the structure of Eu(p-MOBA)3phen was not changed when doped with rare earth ions (Gd3+, La3+), indicating that the doping of rare earth ions (Gd3+, La3+) partially replaced Eu3+. The fluorescence spectrum shows that the addition of rare earth ions (Gd3+, La3+) have a gain effect on the luminescence of Eu(p-MOBA)3phen, and the corresponding TSPs have good fluorescence temperature quenching property in the temperature range of 50~100℃. Compared with La3+ doped Eu(p-MOBA)3phen/PMMA, Gd3+ doped Eu(p-MOBA)3phen/PMMA has stronger fluorescence emission and higher temperature sensitivity. It can be seen that different rare earths (Gd3+, La3+) have different effects on the fluorescence and temperature sensitivity properties of Eu(p-MOBA)3phen/PMMA.
  • 加载中
    1. [1]

      Matsuda Y, Kameya T, Suzuki Y, et al. Sens. Actuators B, 2017, 250:563-568  doi: 10.1016/j.snb.2017.04.188

    2. [2]

      Ghorbani-Tari Z, Chen Y J, Liu Y Z. Appl. Therm. Eng., 2017, 122:697-705  doi: 10.1016/j.applthermaleng.2017.05.040

    3. [3]

      Ghorbani-Tari Z, Chen Y J, Liu Y Z. Exp. Therm Fluid Sci., 2018, 98:56-67  doi: 10.1016/j.expthermflusci.2018.05.014

    4. [4]

      Tan C L, Wang Q M. Inorg. Chem. Commun., 2011, 14(4):515-518
       

    5. [5]

      Kurits I, Lewis M J. J. Thermophys. Heat Transf., 2009, 23(2):256-266
       

    6. [6]

      Wang X D, Wolfbeis O S, Meier R J. Chem. Soc. Rev., 2013, 42(19):7834-7869  doi: 10.1039/c3cs60102a

    7. [7]

      Liu T S, Montefort J, Schick N, et al. Int. J. Heat Mass Trans-fer, 2019, 137:337-348  doi: 10.1016/j.ijheatmasstransfer.2019.03.134

    8. [8]

      Ozawa H. Phys. Fluids, 2016, 28(4):046103

    9. [9]

      Li Y, Li Z M. Procedia Eng., 2015, 99:1152-1157  doi: 10.1016/j.proeng.2014.12.697

    10. [10]

      Ozawa H, Laurence S J, Schramm J M, et al. Exp. Fluids, 2015, 56(1):1853  doi: 10.1007/s00348-014-1853-y

    11. [11]

      Xiong Y J, Huang P L, Zhang X W, et al. Inorg. Chem. Com-mun., 2015, 56:53-57  doi: 10.1016/j.inoche.2015.03.023

    12. [12]

      Schäferling M. Angew. Chem. Int. Ed., 2012, 51(15):3532-3554  doi: 10.1002/anie.201105459

    13. [13]

      Zhang W J, Zou X F, Zhao J F. J. Mater. Chem. C, 2015, 3(6):1294-1300  doi: 10.1039/C4TC02172J

    14. [14]

      ZHANG Min, SUN Jing, LIU Hui-Min, et al. Chinese J. Inorg. Chem., 2016, 32(3):421-426
       

    15. [15]

      Zhang J J, Xu S L, Ren N, et al. Russ. J. Coord. Chem., 2007, 33:611-615  doi: 10.1134/S1070328407080118

    16. [16]

      SONG Ya-Jiao, SUN Jing, ZHU Peng, et al. Chinese J. Inorg. Chem., 2013, 29(6):1171-1175
       

    17. [17]

      LI Xia, REN Gui-Fen, LIU Meng-You, et al. Spectrosc Spec Anal., 2004, 24(11):1410-1411  doi: 10.3321/j.issn:1000-0593.2004.11.036

    18. [18]

      SONG Huan-Huan, SUN Jing, PAN Liu, et al. J. Chin. Rare Earth Soc., 2015, 33(1):32-38
       

    19. [19]

      BI Guan, SUN Jing, ZHOU Chen, et al. Chinese J. Inorg. Chem., 2019, 35(2):203-208
       

    20. [20]

      LU Si-Yu, LIU Xu-Ri, BI Guan, et al. Chinese J. Inorg. Chem., 2018, 34(4):683-688
       

  • 加载中
    1. [1]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    2. [2]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    3. [3]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    4. [4]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    5. [5]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    6. [6]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    7. [7]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    8. [8]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    9. [9]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    10. [10]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    11. [11]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

Metrics
  • PDF Downloads(2)
  • Abstract views(871)
  • HTML views(128)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return