Citation: WU Xiao-Min, MAO Jian, ZHOU Zhi-Peng, ZHANG Chen, BU Jing-Ting, LI Zhen. Building a High-Performance Supercapacitor with Nitrogen-Doped Graphene Quantum Dots/MOF-Derived Porous Carbon Nanosheets[J]. Chinese Journal of Inorganic Chemistry, ;2020, 36(7): 1298-1308. doi: 10.11862/CJIC.2020.139 shu

Building a High-Performance Supercapacitor with Nitrogen-Doped Graphene Quantum Dots/MOF-Derived Porous Carbon Nanosheets

  • Corresponding author: LI Zhen, lizhen@shu.edu.cn
  • Received Date: 27 December 2019
    Revised Date: 2 April 2020

Figures(7)

  • Co-MOF two-dimensional nanosheets were first grown on a carbon cloth by solution method, and MOFderived porous carbon nanosheets were obtained after high temperature annealing and etching process. Co-MOF derived porous carbon nanosheets/carbon cloths (CNSs/CC) was used as the carbon-based framework, and highly active nitrogen-doped graphene quantum dots (N-GQDs) were loaded by electrochemical deposition to prepare hierarchical porous structures N-GQD/CNS/CC composite material as electrode material for supercapacitors. The N-GQD/CNS/CC electrode, as a self-supporting and adhesive-free electrode, delivered a specific capacitance of 423 F·g-1 at 1 A·g-1. According to the mechanism of energy storage and capacitance contribution, the N-GQD/CNS/CC composite is an ideal supercapacitor electrode material with high capacitance, due to synergetic effect between CNS grown in situ on carbon fiber with high double-layer capacitance and N-GQDs loaded on the surface with high pseudo-capacitance. The highly conductive, hierarchical porous structure of the electrode material is beneficial to the electron transport and the diffusion of electrolyte ions, which presents good kinetic performance, high rate performance and rapid charge-discharge capability. A symmetrical supercapacitor based on N -GQD/CNS/CC electrode exhibited a high energy density of 250 W·kg-1 at power density of 7.9 Wh·kg-1, while the capacitance retention after 10 000 cycles reached 91.2%, which indicates that the N-GQD/CNS/CC composite is an all-carbon electrode material with stable electrochemical performance and high capacitance performance.
  • 加载中
    1. [1]

      Zhang C, Wei Y L, Cao P F, et al. Renewable Sustainable Energy Rev., 2018, 82:3091-3106  doi: 10.1016/j.rser.2017.10.030

    2. [2]

      CHEN Chan-Juan, HU Zhong-Ai, HU Ying -Ying, et al. Acta Phys.-Chim. Sin., 2014, 30(12):2256-2262  doi: 10.3866/PKU.WHXB201409302

    3. [3]

      ZHANG Xuan-Xuan, RAN Fen, FAN Hui-Li, et al. Acta Phys.-Chim. Sin., 2014, 30(5):881-890
       

    4. [4]

      TONG Yong-Li, DAI Mei-Zhen, XING Lei, et al. Acta Phys.-Chim. Sin., 2020, 36(7):1903046
       

    5. [5]

      DU Wei-Shi, LÜ Yao-Kang, CAI Zhi-Wei, et al. Acta Phys.-Chim. Sin., 2017, 33(9):1828-1837
       

    6. [6]

      May G J, Davidson A, Monahov B. J. Energy Storage, 2018, 15:145-157  doi: 10.1016/j.est.2017.11.008

    7. [7]

      Kazempour S J, Moghaddam M P, Haghifam M R, et al. Renew. Energy, 2009, 34(12):2630-2639  doi: 10.1016/j.renene.2009.04.027

    8. [8]

      Diaz-Gonzalez F, Sumper A, Gomis-Bellmunt O, et al. Renewable Sustainable Energy Rev., 2012, 16(4):2154-2171
       

    9. [9]

      Kaldellis J K, Zafirakis D. Energy, 2007, 32(12):2295-2305  doi: 10.1016/j.energy.2007.07.009

    10. [10]

      He D L, Zhao W, Li P, et al. Appl. Surf. Sci., 2019, 465:303312

    11. [11]

      LI Xue-Qin, CHANG Lin, ZHAO Shen-Long, et al. Acta Phys.-Chim. Sin., 2017, 33(1):130-148
       

    12. [12]

      XIN Ran-Ran, MIAO Hang-Jin, JIANG Wei, et al. Chinese J. Inorg. Chem., 2019, 35(10):1781-1790  doi: 10.11862/CJIC.2019.222
       

    13. [13]

      Divya K C, Ostergaard J. Electr. Power Syst. Res., 2009, 79(4):511-520

    14. [14]

      GUO Nan-Nan, ZHANG Su, WANG Lu Xiang, et al. Acta Phys.-Chim. Sin., 2020, 36(2):1903055
       

    15. [15]

      Cao X H, Zheng B, Shi W H, et al. Adv. Mater., 2015, 27(32):4695-4701  doi: 10.1002/adma.201501310

    16. [16]

      Li X, Gu T L, Wei B Q. Nano Letti., 2012, 12(12):6366-6371  doi: 10.1021/nl303631e

    17. [17]

      Dahal B, Mukhiya T, Ojha G P, et al. Electrochim. Acta, 2019, 301:209-219  doi: 10.1016/j.electacta.2019.01.171

    18. [18]

      Li S M, Yang K, Ya P, et al. Appl. Surf. Sci., 2020, 503:144090  doi: 10.1016/j.apsusc.2019.144090

    19. [19]

      Li Z X, Yang B L, Kong L J, et al. Carbon, 2019, 144:540548

    20. [20]

      Jiang W C, Pan J Q, Liu X G. J. Power Sources, 2019, 409:13-23  doi: 10.1016/j.jpowsour.2018.10.086

    21. [21]

      JIA Zhao-Yang, LIU Mei-Nan, ZHAO XinLuo, et al. Acta Phys.-Chim. Sin., 2017, 33(12):2510-2516  doi: 10.3866/PKU.WHXB201705311

    22. [22]

      ZHU Jia-Yao, DONG Yue, ZHANG Su, et al. Acta Phys.-Chim. Sin., 2020, 36(2):1903052

    23. [23]

      Xue Q, Huang H, Wang L, et al. Nanoscale, 2013, 5(24):12098-12103  doi: 10.1039/c3nr03623e

    24. [24]

      Wang L, Wang Y L, Xu T, et al. Nat. Commun., 2014, 5:6367
       

    25. [25]

      Li Z, Cao L, Qin P, et al. Carbon, 2018, 139:67-75  doi: 10.1016/j.carbon.2018.06.042

    26. [26]

      Li Z, Liu X, Wang L, et al. Small, 2018, 14(39):1801498  doi: 10.1002/smll.201801498

    27. [27]

      Pan D Y, Huang H, Wang X Y, et al. J. Mater. Chem. A, 2014, 2(29):11454-11464  doi: 10.1039/C4TA01613K

    28. [28]

      Li Z, Bu F, Wei J J, et al. Nanoscale, 2018, 10(48):2287122883

    29. [29]

      Li Z, Li Y F, Wang L, et al. Electrochim. Acta, 2017, 235:561-569  doi: 10.1016/j.electacta.2017.03.147

    30. [30]

      Li Z, Qin P, Wang L, et al. Electrochim. Acta, 2016, 208:260266

    31. [31]

      Li Z, Wei J J, Ren J, et al. Carbon, 2019, 154:410-419  doi: 10.1016/j.carbon.2019.08.040

    32. [32]

      Ding Y C, Hu L H, He D C, et al. Chem. Eng. J., 2020, 380:122489  doi: 10.1016/j.cej.2019.122489

    33. [33]

      Li Q, Zhou J J, Liu R, et al. Dalton Trans., 2019, 48(46):17163-17168  doi: 10.1039/C9DT03821C

    34. [34]

      LIANG Xu, JIA Yu-Feng, LIU Zong-Huai, et al. Acta Phys.-Chim. Sin., 2020, 36(2):1903034
       

    35. [35]

      Wang N, Zhao P, Liang K, et al. Chem. Eng. J., 2017, 307:105-112  doi: 10.1016/j.cej.2016.08.074

    36. [36]

      Wei J, Zhou D D, Sun Z K, et al. Adv. Funct. Mater., 2013, 23(18):2322-2328  doi: 10.1002/adfm.201202764

    37. [37]

      Yang Q J, Liu Y, Yan M, et al. Chem. Eng. J., 2019, 370:666676

    38. [38]

      Brezesinski T, Wang J, Tolbert S H, et al. Nat. Mater., 2010, 9(2):146-151
       

    39. [39]

      Puthusseri D, Aravindan V, Madhavi S, et al. Energy Environ. Sci., 2014, 7(2):728-735
       

    40. [40]

      Gong C C, Wang X Z, Ma D H, et al. Electrochim. Acta, 2016, 220:331-339  doi: 10.1016/j.electacta.2016.10.120

    41. [41]

      He X J, Li R C, Qiu J S, et al. Carbon, 2012, 50(13):49114921

    42. [42]

      Ling Z, Wang Z Y, Zhang M D, et al. Adv. Funct. Mater., 2016, 26(1):111-119

    43. [43]

      WU Zhong-Yu, FAN Lei, TAO You-Rong, et al. Chinese J. Inorg. Chem., 2018, 34(7):1249-1260
       

    44. [44]

      Ma G F, Guo D Y, Sun K J, et al. RSC Adv., 2015, 5(79):64704-64710  doi: 10.1039/C5RA11179J

  • 加载中
    1. [1]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    2. [2]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    3. [3]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    4. [4]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    5. [5]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    6. [6]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    7. [7]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    8. [8]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    9. [9]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    10. [10]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    11. [11]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    12. [12]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    13. [13]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    14. [14]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    15. [15]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    16. [16]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    17. [17]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    18. [18]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    19. [19]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    20. [20]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

Metrics
  • PDF Downloads(40)
  • Abstract views(1972)
  • HTML views(775)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return