Citation: TANG Shu-Xuan, ZHANG Li, RUAN Hua-Peng, ZHAO Yue, TAN Geng-Wen, WANG Xin-Ping. An Isolable Dinuclear Iron Hydride Radical Cation[J]. Chinese Journal of Inorganic Chemistry, ;2020, 36(6): 1131-1136. doi: 10.11862/CJIC.2020.115 shu

An Isolable Dinuclear Iron Hydride Radical Cation

Figures(5)

  • The dinuclear iron hydride radical cation salt cis-[Fe2Cp2(μ-H)(μ-PPh2)(CO)2]·+[Al(OC(CF3)3)4]-(cis-1·+[Al(OC(CF3)3)4]-) was isolated as a crystalline solid. It has been characterized by single crystal X-ray crystallography, electron paramagnetic resonance (EPR), infrared, and UV-Vis spectroscopy, in conjunction with density functional theory (DFT) calculations. EPR and DFT calculation studies reveal that the spin density of the radical is mainly equally located at both of the iron atoms.
  • 加载中
    1. [1]

      (a) Hu Y, Shaw A P, Estes D P, et al. Chem. Rev., 2016, 116: 8427-8462
      (b)Wiedner E S, Chambers M B, Pitman C L, et al. Chem. Rev., 2016, 116: 8655-8692
      (c)Schilter D, Camara J M, Huynh M T, et al. Chem. Rev., 2016, 116: 8693-8749

    2. [2]

      (a) Liu T F, Guo M Y, Orthaber A, et al. Nat. Chem., 2018, 10: 881-887
      (b)Huang T, Rountree E S, Traywick A P, et al. J. Am. Chem. Soc., 2018, 140: 14655-14669
      (c)Bourrez M, Steinmetz R, Ott S, et al. Nat. Chem., 2014, 7: 140-145

    3. [3]

      (a) Ogata H, Lubitz W, Higuchi Y. Dalton Trans., 2009: 7577-7587
      (b)Frey M. ChemBioChem, 2002, 3: 153-160
      (c)Evans D J, Pickett C J. Chem. Soc. Rev., 2003, 32: 268-275
      (d)Lubitz W, Ogata H, Rüdiger O, et al. Chem. Rev., 2014, 114: 4081-4148
      (e)Hembre R T, Scott McQueen J, Day V W. J. Am. Chem. Soc., 1996, 118: 798-803

    4. [4]

      Shaw A P, Ryland B L, Franklin M J, et al. J. Org. Chem., 2008, 73:9668-9674  doi: 10.1021/jo801928t

    5. [5]

      (a) Ryan O B, Tilset M, Parker V D. J. Am. Chem. Soc., 1990, 112: 2618-2626
      (b)Roberts J A S, Appel A M, DuBois D L, et al. J. Am. Chem. Soc., 2011, 133: 14604-14613

    6. [6]

      (a) Blaine C A, Ellis J E, Mann K R. Inorg. Chem., 1995, 34: 1552-1561
      (b)Roullier L, Lucas D, Mugnier Y, et al. J. Organomet. Chem., 1990, 396: C12-C16

    7. [7]

      Baya M, Houghton J, Daran J C, et al. Chem. Eur. J., 2007, 13:5347-5359  doi: 10.1002/chem.200700293

    8. [8]

      Klingler R J, Huffman J C, Kochi J K. J. Am. Chem. Soc., 1980, 102:208-216  doi: 10.1021/ja00521a033

    9. [9]

      Ryan O B, Tilset M. J. Am. Chem. Soc., 1991, 113:9554-9561  doi: 10.1021/ja00025a020

    10. [10]

      Eberhart M S, Norton J R, Zuzek A, et al. J. Am. Chem. Soc., 2013, 135:17262-17265  doi: 10.1021/ja408925m

    11. [11]

      Bianchini C, Masi D, Mealli C, et al. Gazz. Chim. Ital., 1986, 116:201-206

    12. [12]

      (a) Hamor P, Toupet L, Hamon J R, et al. Organometallics, 1992, 11: 1429-1431
      (b)Tilset M, Fjeldahl I, Hamon J R, et al. J. Am. Chem. Soc., 2001, 123: 9984-10000
      (c)Zhang F J, Jia J, Dong S L, et al. Organometallics, 2016, 35: 1151-1159
      (d)Yu X, Tung C H, Wang W G, et al. Organometallics, 2017, 36: 2245-2253

    13. [13]

      Nakazawa H, Itazaki M. Iron Catalysis: Fundamentals and Applications. Plietker B, Ed., Berlin, Heidelberg: Springer-Verlag, 2011: 27-81

    14. [14]

      (a) Volbeda A, Charon M H, Piras C, et al. Nature, 1995, 373: 580-587
      (b)Fontecilla-Camps J C, Volbeda A, Cavazza C, et al. Chem. Rev., 2007, 107: 4273-4303

    15. [15]

      Liu Y C, Chu K T, Huang Y L, et al. ACS Catal., 2016, 6:2559-2576  doi: 10.1021/acscatal.5b02646

    16. [16]

      (a) Bianchini C, Laschi F, Peruzzini M, et al. Inorg. Chem., 1990, 29: 3394-3402
      (b)Alvarez C M, Esther García M, Ruiz M A, et al. Organometallics, 2004, 23: 4750-4758
      (c)Jiménez-Tenorio M, Carmen Puerta M, Valerga P. Organometallics, 1994, 13: 3330-3337
      (d)Gargano M, Giannoccaro P, Rossi M, et al. J. Chem. Soc. Dalton Trans., 1975: 9-12

    17. [17]

      (a) Zheng X, Wang X Y, Zhang Z C, et al. Angew. Chem. Int. Ed., 2015, 54: 9084-9087
      (b)Wang W Q, Wang X Y, Zhang Z C, et al. Chem. Commun., 2015, 51: 8410-8413
      (c)Li S Y, Wang X Y, Zhang Z C, et al. Dalton Trans., 2015, 44: 19754-19757
      (d)Zheng X, Zhang Z C, Tan G W, et al. Inorg. Chem., 2016, 55: 1008-1010
      (e)Wang W Q, Li J, Yin L, et al. J. Am. Chem. Soc., 2017, 139: 12069-12075
      (f)Tan G W, Wang X P. Chin. J. Chem., 2018, 36: 573-586

    18. [18]

      Krossing I. Chem. Eur. J., 2001, 7:490-502  doi: 10.1002/1521-3765(20010119)7:2<490::AID-CHEM490>3.0.CO;2-I

    19. [19]

      Sheldrick G M. SHELX-2018, Program for Crystal Structure Refinement, University of Göttingen, Germany, 2018.

    20. [20]

      Decken A, Craig C D, Bottomley F. Acta Crystallogr. Sect. E, 2004, E60:m1284-m1285

    21. [21]

      Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT, 2010.

  • 加载中
    1. [1]

      Wei ZhouXi ChenLin LuXian-Rong SongMu-Jia LuoQiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902

    2. [2]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    3. [3]

      Jingtai BiYupeng ChengMengmeng SunXiaofu GuoShizhao WangYingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639

    4. [4]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    5. [5]

      Huaixiang YangMiao-Miao LiAijun ZhangJiefei GuoYongqi YuWei Ding . Visible-light-induced photocatalyst- and metal-free radical phosphinoyloximation of alkenes with tert-butyl nitrite as bifunctional reagent. Chinese Chemical Letters, 2025, 36(3): 110425-. doi: 10.1016/j.cclet.2024.110425

    6. [6]

      Ziyi Liu Feifei Guo Tingting Cao Youxuan Sun Xutang Tao Zeliang Gao . High thermal conductivity in Ga2TeO6 crystals: Synergistic effects of rigid polyhedral frameworks and stereochemically inert cations. Chinese Journal of Structural Chemistry, 2025, 44(4): 100544-100544. doi: 10.1016/j.cjsc.2025.100544

    7. [7]

      Honglin Gao Chunlin Yuan Hongyu Chen Aiyi Dong Pan Gao Guangjin Hou . Surface gallium hydride on Ga2O3 polymorphs: A comparative solid-state NMR study. Chinese Journal of Structural Chemistry, 2025, 44(4): 100561-100561. doi: 10.1016/j.cjsc.2025.100561

    8. [8]

      Jindian DuanXiaojuan DingPui Ying ChoyBinyan XuLuchao LiHong QinZheng FangFuk Yee KwongKai Guo . Oxidative spirolactonisation for modular access of γ-spirolactones via a radical tandem annulation pathway. Chinese Chemical Letters, 2024, 35(10): 109565-. doi: 10.1016/j.cclet.2024.109565

    9. [9]

      Xiao-Bo LiuRen-Ming LiuXiao-Di BaoHua-Jian XuQi ZhangYu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783

    10. [10]

      Shuai LiLiuting ZhangFuying WuYiqun JiangXuebin Yu . Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chinese Chemical Letters, 2025, 36(1): 109566-. doi: 10.1016/j.cclet.2024.109566

    11. [11]

      Yubang LiuJiaxin LinHuayu LiangYinwu LiZhuofeng Ke . Computational insights into three-centre four-electron bridging hydride bond in boryl type PBP-M dihydride complexes✰ ✩. Chinese Chemical Letters, 2025, 36(5): 110291-. doi: 10.1016/j.cclet.2024.110291

    12. [12]

      Jing-Qi TaoShuai LiuTian-Yu ZhangHong XinXu YangXin-Hua DuanLi-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263

    13. [13]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    14. [14]

      Yuhan LiuJingyang ZhangGongming YangJian Wang . Highly enantioselective carbene-catalyzed δ-lactonization via radical relay cross-coupling. Chinese Chemical Letters, 2025, 36(1): 109790-. doi: 10.1016/j.cclet.2024.109790

    15. [15]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    16. [16]

      Yaxuan Jin Chao Zhang Guigang Zhang . Atomically dispersed low-valent Au on poly(heptazine imide) boosts photocatalytic hydroxyl radical production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100414-100414. doi: 10.1016/j.cjsc.2024.100414

    17. [17]

      Jinshuai ZhengJunfeng NiuCrispin HalsallYadi GuoPeng ZhangLinke Ge . New insights into transformation mechanisms for sulfate and chlorine radical-mediated degradation of sulfonamide and fluoroquinolone antibiotics. Chinese Chemical Letters, 2025, 36(5): 110202-. doi: 10.1016/j.cclet.2024.110202

    18. [18]

      Shaofeng GongZi-Wei DengChao WuWei-Min He . Stabilized carbon radical-mediated three-component functionalization of amino acid/peptide derivatives. Chinese Chemical Letters, 2025, 36(5): 110936-. doi: 10.1016/j.cclet.2025.110936

    19. [19]

      Chonglong HeYulong WangQuan-Xin LiZichen YanKeyuan ZhangShao-Fei NiXin-Hua DuanLe Liu . Alkylarylation of alkenes with arylsulfonylacetate as bifunctional reagent via photoredox radical addition/Smiles rearrangement cascade. Chinese Chemical Letters, 2025, 36(5): 110253-. doi: 10.1016/j.cclet.2024.110253

    20. [20]

      Xiang LiBeibei ZhangZhixiang WangXiangyu Chen . Organocatalyzed iodine-mediated reversible-deactivation radical polymerization via photoinduced charge transfer complex catalysis. Chinese Chemical Letters, 2025, 36(6): 110383-. doi: 10.1016/j.cclet.2024.110383

Metrics
  • PDF Downloads(2)
  • Abstract views(1606)
  • HTML views(120)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return