Citation: GE Chao, Lü Meng-Di, ZHANG Zi-You, CHEN Jun, WANG Meng-Meng, XUE Xu-Ling, QIAN Yong, LIU Hong-Ke. Trends of Platinum and Metal-Arene Anticancer Drugs Based on Natural Products[J]. Chinese Journal of Inorganic Chemistry, ;2020, 36(4): 597-606. doi: 10.11862/CJIC.2020.086 shu

Trends of Platinum and Metal-Arene Anticancer Drugs Based on Natural Products

Figures(15)

  • More than 50% of modern drugs used clinically come from natural products, which can prevent tumor growth and progression by influencing multiple biological pathways such as blocking cell cycle progression, inhibiting cancer cell survival signaling pathway and regulating immune cells. They also show low toxicity to normal tissues. Metal antitumor drugs represented by cisplatin have been widely used in clinical practice. However, they also have severe drug resistance and side effects, such as nephrotoxicity and neurotoxicity. Therefore, modified platinum drugs with natural products are beneficial for overcoming their deficiencies. On the other hand, the emergence of arene-metal complexes provides more possibilities for the development of high-efficiency and low-toxicity anticancer drugs due to their good water solubility and low toxicity towards normal organisms. Combining the respective advantages of natural products and metals opened up new opportunities for the development of anti-cancer drugs, and the development of metal complexes based on natural products as anticancer agents has become a research hotspot. In this paper, the research and mechanism of platinum and arene-metal complexes based on natural products are reviewed comprehensively, and the future development in this field has prospected.
  • 加载中
    1. [1]

      Galanski M.. Recent Pat. Anticancer Drug Discov., 2006, 1(2):285-295  doi: 10.2174/157489206777442287

    2. [2]

      Reed E.. Cancer Treat. Rev., 1998, 24(5):331-344  doi: 10.1016/S0305-7372(98)90056-1

    3. [3]

      Xue X L, Zhu C C, Guo Z J, et al.. Inorg. Chem., 2017, 56(7):3754-3762  doi: 10.1021/acs.inorgchem.6b02148

    4. [4]

      Xue X L, Qian C G, Guo Z J, et al.. Angew. Chem. Int. Ed., 2019, 58:12661-12666  doi: 10.1002/anie.201906203

    5. [5]

      Hall M D, Mellor H R, Hambley T W, et al.. J. Med. Chem., 2007, 50(15):3403-3411  doi: 10.1021/jm070280u

    6. [6]

      Rijt S V, Sadler P J.. Drug Discovery Today, 2009, 14:1089-1097  doi: 10.1016/j.drudis.2009.09.003

    7. [7]

      Johnstone T C, Suntharalingam K, Lippard S J.. Chem. Rev., 2016, 116(5):3436-3486  doi: 10.1021/acs.chemrev.5b00597

    8. [8]

      Wang X Y, Wang X H, Guo Z J.. Acc. Chem. Res., 2015, 48(9):2622-2631  doi: 10.1021/acs.accounts.5b00203

    9. [9]

      Wang X Y, Guo Z J.. Chem. Soc. Rev., 2013, 42(1):202-224  doi: 10.1039/C2CS35259A

    10. [10]

      Huang X C, Huang R Z, Wang Z M, et al.. Bioconjugate Chem., 2016, 27:2132-2148  doi: 10.1021/acs.bioconjchem.6b00353

    11. [11]

      Parveen S, Arjmand F, Tabassum S.. Eur. J. Med. Chem., 2019, 175:269-286  doi: 10.1016/j.ejmech.2019.04.062

    12. [12]

      Abid M, Shamsi F, Azam A.. Mini-Rev. Med. Chem., 2016, 16(10):772-786  doi: 10.2174/1389557515666151001142012

    13. [13]

      Dyson P J, Sava G.. Dalton Trans., 2006, 16:1929-1933
       

    14. [14]

      Adam A M A.. J. Mol. Struct., 2019, 1195:43-57  doi: 10.1016/j.molstruc.2019.05.097

    15. [15]

      Liu H K, Sadler P J.. Acc. Chem. Res., 2011, 44:349-359  doi: 10.1021/ar100140e

    16. [16]

      Li J J, Tian Z Z, Liu Z, et al.. Appl. Organometal. Chem., 2019, 33(4):4685-4695  doi: 10.1002/aoc.4685

    17. [17]

      Kelman A D, Clarke M J, Peresie H J, et al.. J. Clin. Hematol. Oncol., 1977, 7:274-288
       

    18. [18]

      Alessio E, Mestroni G, Sava G, et al.. Metal Ions in Biological Systems. Florida:CRC Press, 2004:323-351
       

    19. [19]

      Mestroni G, Pacor S, Zorzet S, et al.. Chemical, Biological and Antitumor Properties of Ruthenium(Ⅱ) Complexes with Dimethyl Sulfoxide. Berlin, New York:Springer-Verlag, 1989:71-87
       

    20. [20]

      Alessio E, Sava G, Beijnen J H, et al.. Invest. New Drugs, 2015, 33:201-214  doi: 10.1007/s10637-014-0179-1

    21. [21]

      Alessio E, Mestroni G, Bergamo A, et al.. Curr. Top. Med. Chem., 2004, 4:1525-1535  doi: 10.2174/1568026043387421

    22. [22]

      Alessio E, Messori L.. Met. Ions Life Sci., 2018, 18:141-170

    23. [23]

      Clarke M J, Bitler S, Kelman A D, et al.. J. Inorg. Biochem., 1980, 12:79-87  doi: 10.1016/S0162-0134(00)80045-8

    24. [24]

      Antonarakis E S, Emadi A.. Cancer Chemother. Pharmacol., 2010, 66(1):1-9  doi: 10.1007/s00280-010-1293-1

    25. [25]

      Reisner E, Arion V B, Pombeiro A J L, et al.. Inorg. Chem., 2004, 43:7083-7093  doi: 10.1021/ic049479c

    26. [26]

      Jakupec M A, Hartinger C G, Keppler B K, et al.. J. Med. Chem., 2005, 48:2831-2837  doi: 10.1021/jm0490742

    27. [27]

      Habtemariam A, Melchart M, Sadler P J, et al.. J. Med. Chem., 2006, 49:6858-6868  doi: 10.1021/jm060596m

    28. [28]

      Chen H, Parkinson J A, Sadler P J, et al.. J. Am. Chem. Soc., 2002, 124(12):3064-3082  doi: 10.1021/ja017482e

    29. [29]

      Coverdale J P C, Bridgewater H E, Sadler P J, et al.. J. Med. Chem., 2018, 61(20):9246-9255  doi: 10.1021/acs.jmedchem.8b00958

    30. [30]

      Liu H K, Habtemariam A, Sadler P J, et al.. Dalton Trans., 2016, 45:18676-18688  doi: 10.1039/C6DT03356C

    31. [31]

      Yan Y K, Habtemariam A, Sadler P J, et al.. Chem. Commun., 2005, 38:4764-4776

    32. [32]

      Wang H Y, Sadler P J, Liu H K, et al.. Eur. J. Inorg. Chem., 2017, 12:1792-1799
       

    33. [33]

      Banerjee S, Soldevila-Barreda J J, Sadler P J, et al.. Chem. Sci., 2018, 9(12):3177-3185  doi: 10.1039/C7SC05058E

    34. [34]

      Hartinger C G, Dyson P J.. Chem. Soc. Rev., 2009, 38:391-401  doi: 10.1039/B707077M

    35. [35]

      Aird R E, Cummings J, Sadler P J, et al.. Br. J. Cancer, 2002, 86(10):1652-1657  doi: 10.1038/sj.bjc.6600290

    36. [36]

      Liu H K, Parkinson J A, Sadler P J, et al.. Chem. Sci., 2010, 1:258-270  doi: 10.1039/c0sc00175a

    37. [37]

      Liu H K, Bella J, P.. J. Sadler, et al. Angew. Chem. Int. Ed., 2006, 45:8153-8156  doi: 10.1002/anie.200602873

    38. [38]

      Liu H K, Wang F Y, Sadler P J, et al.. Chem. Eur. J., 2006, 12:6151-6165  doi: 10.1002/chem.200600110

    39. [39]

      Wootton C A, Liu H K, Sadler P J, et al.. Dalton Trans., 2015, 44:3624-3632  doi: 10.1039/C4DT03819C

    40. [40]

      Li J, Sadler P J, Liu H K, et al.. Dalton Trans., 2017, 46:16205-16215  doi: 10.1039/C7DT03374E

    41. [41]

      Wu Q, Mao Z W, Liu H K, et al.. J. Inorg. Biochem., 2018, 189:30-39  doi: 10.1016/j.jinorgbio.2018.08.013

    42. [42]

      HAO Yuan-Yuan, GE Chao, LIU Hong-Ke, et al.. Chem. J. Chinese Universities, 2018, 39(4):614-622

    43. [43]

      GE Chao, QIAN Yong, LIU Hong-Ke, et al.. Chinese J. Inorg. Chem., 2018, 34(6):1079-1085
       

    44. [44]

      Cragg G M, Grothaus P G, Newman D J, et al.. Chem. Rev., 2009, 109:3012-3043  doi: 10.1021/cr900019j

    45. [45]

      Robinson S L, Christensonab J K, Wackett L P.. Nat. Prod. Rep., 2019, 36:458-475  doi: 10.1039/C8NP00052B

    46. [46]

      Lefranc F, Koutsaviti A, Kornienko A, et al.. Nat. Prod. Rep., 2019, 36:810-841  doi: 10.1039/C8NP00057C

    47. [47]

      Gao Z, Huang K, Yang X, et al.. Biochim. Biophys. Acta, 1999, 1472:643-650  doi: 10.1016/S0304-4165(99)00152-X

    48. [48]

      Liu Z L, Tanaka S, Horigome H, et al.. Biol. Pharm. Bull., 2002, 25:37-41  doi: 10.1248/bpb.25.37

    49. [49]

      Qin X D, Xu G, Gou S H, et al.. Biol. Med. Chem., 2017, 25:2507-2517  doi: 10.1016/j.bmc.2017.03.007

    50. [50]

      Middleton E, Kandaswami C, Theoharides T C.. Pharmacol. Rev., 2000, 52:673-751
       

    51. [51]

      Kurzwernhart A, Kandioller W, Hartinger C G, et al.. Chem. Commun., 2012, 48:4839-4841  doi: 10.1039/c2cc31040f

    52. [52]

      Kurzwernhart A, Kandioller W, Hartinger C G.. J. Med. Chem., 2012, 55:10512-10522  doi: 10.1021/jm301376a

    53. [53]

      Kurzwernhart A, Keppler B K, Hartinger C G, et al.. Eur. J. Inorg. Chem., 2016, 2:240-246
       

    54. [54]

      Aggarwal B B, Kumar A, Bharti A C.. Anticancer Res., 2003, 23:363-398
       

    55. [55]

      Zhang Y N, Fu M F, Zhai G X, et al.. Future Med. Chem., 2019, 11(9):1035-1056  doi: 10.4155/fmc-2018-0190

    56. [56]

      Valentini A, Conforti F, Crispini A, et al.. J. Med. Chem., 2009, 52:484-491  doi: 10.1021/jm801276a

    57. [57]

      Anand P, Kunnumakkara A B, Newman R A, et al.. Mol. Pharm., 2007, 4(6):807-818  doi: 10.1021/mp700113r

    58. [58]

      Kunnumakkara A B, Diagaradjane P, Guha S, et al.. Clin. Cancer Res., 2008, 14(7):2128-2136  doi: 10.1158/1078-0432.CCR-07-4722

    59. [59]

      Odot J, Albert P, Carlier A, et al.. Int. J. Cancer, 2004, 111(3):381-387

    60. [60]

      Cao J, Liu Y, Jia L, et al.. Free Radical Biol. Med., 2007, 43(6):968-975  doi: 10.1016/j.freeradbiomed.2007.06.006

    61. [61]

      Kumar A, Dhawan S, Hardegen N J, et al.. Biochem. Pharmacol., 1998, 55:775-783  doi: 10.1016/S0006-2952(97)00557-1

    62. [62]

      Singh S, Aggarwal B B.. J. Biol. Chem., 1995, 270(42):24995-25000  doi: 10.1074/jbc.270.42.24995

    63. [63]

      Schwertheim S, Wein F, Lennartz K, et al.. J. Cancer Res. Clin. Oncol., 2017, 143(7):1143-1154  doi: 10.1007/s00432-017-2380-z

    64. [64]

      Zhang H H, Zhang Y, Cheng Y N, et al.. Mol. Carcinog., 2018, 57(1):44-56

    65. [65]

      Gururaj A E, Belakavadi M, Venkatesh D A, et al.. Biochem. Biophys. Res. Commun., 2002, 297(4):934-942  doi: 10.1016/S0006-291X(02)02306-9

    66. [66]

      Mitra K, Gautam S, Chakravarty A R, et al.. Angew. Chem. Int. Ed., 2015, 54:13989-13993  doi: 10.1002/anie.201507281

    67. [67]

      Censi V, Caballero A B, Gamez P, et al.. J. Inorg. Biochem., 2019, 198:110749-110761  doi: 10.1016/j.jinorgbio.2019.110749

    68. [68]

      Bonfili L, Pettinari R, Cuccioloni M, et al.. ChemMedChem, 2012, 7:2010-2020  doi: 10.1002/cmdc.201200341

    69. [69]

      Caruso F, Rossi M, Pettinari C.. J. Med. Chem., 2012, 55:1072-1081  doi: 10.1021/jm200912j

    70. [70]

      Pettinari R, Marchetti F, Dyson P J, et al.. Organometallics, 2014, 33:3709-3715  doi: 10.1021/om500317b

    71. [71]

      (a) Pettinari R, Marchetti F, Dyson P J, et al.. Dalton Trans., 2015, 44: 20523-20531 (b)Pettinari R, Marchetti F, Dyson P J, et al.. Inorg. Chem. Front., 2019, 6: 2448-2457

    72. [72]

      Kandioller W, Hartinger C G, Keppler B K, et al.. Organometallics, 2009, 28:4249-4251  doi: 10.1021/om900483t

    73. [73]

      Hironishi M, Kordek R, Yanagihara R, et al.. Neurodegenera-tion, 1996, 5:325-329  doi: 10.1006/neur.1996.0044

    74. [74]

      Verma S, Cam M C, McNeill J H.. J. Am. Coll. Nutr., 1998, 17:11-18  doi: 10.1080/07315724.1998.10718730

    75. [75]

      Melchior M, Rettig S J, Liboiron B D, et al.. Inorg. Chem., 2001, 40:4686-4690  doi: 10.1021/ic000984t

    76. [76]

      Carland M, Tan K J, Denny W A, et al.. J. Inorg. Biochem., 2005, 99:1738-1743  doi: 10.1016/j.jinorgbio.2005.06.003

    77. [77]

      Peacock A F A, Melchart M, Sadler P J, et al.. Chem. Eur. J., 2007, 13:2601-2613  doi: 10.1002/chem.200601152

    78. [78]

      Kandioller W F, Hartinger C G, Dyson P J, et al.. J. Organomet. Chem., 2009, 694:922-929  doi: 10.1016/j.jorganchem.2008.10.016

    79. [79]

      Cao R H, Peng W L, Wang Z H, et al.. Curr. Med. Chem., 2007, 14:479-500  doi: 10.2174/092986707779940998

    80. [80]

      Xiao S L, Lin W, Wang C, et al.. Bioorg. Med. Chem. Lett., 2001, 11:437-441  doi: 10.1016/S0960-894X(00)00679-X

    81. [81]

      Funayama Y, Nishio K, Wakabayashi K, et al.. Mutat. Res., 1996, 349:183-191  doi: 10.1016/0027-5107(95)00176-X

    82. [82]

      Li Y, Liang F S, Jiang W, et al.. Cancer Biol. Ther., 2007, 6:1193-1199
       

    83. [83]

      Castro A C, Dang L C, Soucy F, et al.. Bioorg. Med. Chem. Lett., 2003, 13:2419-2422  doi: 10.1016/S0960-894X(03)00408-6

    84. [84]

      Cao R, Chen Q, Hou X, et al.. Bioorg. Med. Chem., 2004, 12:4613-4623  doi: 10.1016/j.bmc.2004.06.038

    85. [85]

      He L, Liao S Y, Mao Z W, et al.. Chem. Eur. J., 2013, 19:12152-12160  doi: 10.1002/chem.201301389

    86. [86]

      Dzubak P, Hajduch M, Vydra D, et al.. Nat. Prod. Rep., 2006, 33:394-411
       

    87. [87]

      Park H Y, Park S H, Yoon H K, et al.. Arch. Pham. Res., 2004, 27:57-60  doi: 10.1007/BF02980047

    88. [88]

      You R, Long W, Lai Z, et al.. J. Med. Chem., 2013, 56:1984-1995  doi: 10.1021/jm301652t

    89. [89]

      Kalani K, Kushwaha V, Verma R, et al.. Bioorg. Med. Chem. Lett., 2013, 33:2566-2570

    90. [90]

      Kuo R Y, Qian K, Lee H K, et al.. Nat. Prod. Rep., 2009, 26:1321-1344  doi: 10.1039/b810774m

    91. [91]

      Lin K W, Huang A M, Hour T C, et al.. Bioorg. Med. Chem., 2011, 19:4274-4285  doi: 10.1016/j.bmc.2011.05.054

    92. [92]

      Mahmoud A M, Hussein O E, Hozayen W G, et al.. Chem. Biol. Interact., 2017, 270:59-72  doi: 10.1016/j.cbi.2017.04.009

    93. [93]

      Liu Y, Qian K, Wang C Y, et al.. Bioorg. Med. Chem. Lett., 2012, 22:7530-7533  doi: 10.1016/j.bmcl.2012.10.041

    94. [94]

      Song J, Ko H, Sohn E J, et al.. Bioorg. Med. Chem. Lett., 2014, 24:1188-1191  doi: 10.1016/j.bmcl.2013.12.111

    95. [95]

      Vicker N, Su X, Lawrence H, et al.. Bioorg. Med. Chem. Lett., 2004, 14:3263-3267
       

    96. [96]

      Su X, Lawrence H, Ganeshapillai D, et al.. Bioorg. Med. Chem., 2004, 12:4439-4457  doi: 10.1016/j.bmc.2004.06.008

    97. [97]

      Kong Y Q, Chen F, Liu H K, et al.. J. Inorg. Biochem., 2018, 182:194-199  doi: 10.1016/j.jinorgbio.2018.02.004

    98. [98]

      Kapadia N S, Isarani S A, Shah M B.. Pharm. Biol., 2005, 43:551-553  doi: 10.1080/13880200500220888

    99. [99]

      Pile J E, Navalta J W, Davis C D, et al.. J. Nat. Prod., 2013, 76:1001-1006  doi: 10.1021/np3008792

    100. [100]

      Subramaniya B R, Srinivasan G, Sadullah S S M, et al.. PloS One, 2011, 6:1-11
       

    101. [101]

      Padhye S, Dandawate P, Yusufi M, et al.. Med. Res. Rev., 2010, 32:1131-1158
       

    102. [102]

      Sreelatha T, Hymavathi A, Babu K S, et al.. J. Agric. Food Chem., 2009, 57:6090-6094  doi: 10.1021/jf901760h

    103. [103]

      Chen Z F, Tan M X, Liu L M, et al.. Dalton Trans., 2009, 48:10824-10833

    104. [104]

      Likhitwitayawuid K, Kaewamatawong R, Ruangrungsi N, et al.. Planta Med., 1998, 64:237-241  doi: 10.1055/s-2006-957417

    105. [105]

      Prasad K R, Babu K S, Rao R R, et al.. Med. Chem. Res., 2012, 21:578-583  doi: 10.1007/s00044-011-9559-7

    106. [106]

      Mahal K, Schobert R, Biersack B, et al.. J. Inorg. Biochem., 2014, 138:64-72  doi: 10.1016/j.jinorgbio.2014.04.020

  • 加载中
    1. [1]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    2. [2]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    3. [3]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    4. [4]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    5. [5]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    6. [6]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    7. [7]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    8. [8]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    9. [9]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    10. [10]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    11. [11]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    12. [12]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    13. [13]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    14. [14]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    15. [15]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

Metrics
  • PDF Downloads(7)
  • Abstract views(419)
  • HTML views(94)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return