Citation: ZHAO Jing, XU Zhi-Guang, XU Xuan. Coordination Structures of Metal String Complexes [MoMoCo(npo)4(NCS)2] and Relationship with External Electric Field[J]. Chinese Journal of Inorganic Chemistry, ;2020, 36(4): 666-672. doi: 10.11862/CJIC.2020.077 shu

Coordination Structures of Metal String Complexes [MoMoCo(npo)4(NCS)2] and Relationship with External Electric Field

  • Corresponding author: XU Xuan, xuxuan@scnu.edu.cn
  • Received Date: 29 August 2019
    Revised Date: 31 December 2019

Figures(8)

  • Metal string complexes, with the structure of linear metal chain helically wrapped by four equatorial ligands, have attracted extensively attention due to their unique electronic, magnetic, and potential applications in molecular electronics. Some factors such as difference of metal atoms, axial ligands and equatorial ligands would affect the physical properties of conductance and magnetic properties of metal string complexes. The diversity of equatorial ligands provides more possibilities for such changes. The coordination structures of metal string complexes[MoMoCo(npo)4(NCS)2] (npo=1, 8-naphthyl-2-ketone) with potential applications as molecular wires have been investigated using the density functional theory B3LYP method by considering the effects of an external electric field (EF). The coordination mode is denoted as (n, m), where n and m represent the number of oxygen atoms coordinated with the Co3 and Mo1, respectively, and n=0, 1, 2, 3, 4; m=4, 3, 2, 1, 0. The energies and polarities of these molecules increase gradually as the coordination modes of four npo- ligands become more and more consistent, but all of them can exist stably and compete with each other. The Mo-Mo quadruple bond exists in all molecules, and the bond length decreases with the decrease of the Z-direction dipole moment μ(Z). In addition, as the value of μ(Z) decreases, the orbital energy of πNCS*(1) decreases but that of πNCS*(2) increases. The geometric and electronic structures of the five coordination modes change regularly under the action of electric field. Under the electric field effect of Z direction, the Mo1-N8 bond lengths of all coordination modes except (0, 4) increase obviously, leading to structural instability. Moreover, the phenomenons of energy level interlacing in the frontier orbitals, and the reduction of LUMO-HOMO energy gap are related to the value of μ(Z). When μ(Z) is positive, the energy gaps of (0, 4) and (1, 3) decrease more significantly under the electric field effect of -Z direction. However, when μ(Z) is negative, the energy gaps of (2, 2), (3, 1) and (4, 0) decrease more obviously under the electric field effect of Z direction. Therefore, the complexes of (0, 4), (3, 1) and (4, 0) may have the rectification effect, but (3, 1) and (4, 0) are less stable.
  • 加载中
    1. [1]

      Wu L P, Field P, Morrissey T, et al. J. Chem. Soc. Dalton Trans., 1990, 12:3835-3840
       

    2. [2]

      Aduldecha S, Hathaway B. J. Chem. Soc. Dalton Trans., 1991, 4:993-998
       

    3. [3]

      Yang E C, Cheng M C, Tsai M S, et al. Chem. Commun., 1994, 20:2377-2378
       

    4. [4]

      Cotton F A, Daniels L M, Jordan G T, et al. J. Am. Chem., Soc., 1997, 119:10223-10224  doi: 10.1021/ja971998+

    5. [5]

      Clérac R, Cotton F A, Jeffery S P, et al. Inorg. Chem., 2001, 40:1265-1270  doi: 10.1021/ic001069a

    6. [6]

      Berry J F, Cotton F A, Murillo C A, et al. Inorg. Chem., 2004, 43(7):2277-2283  doi: 10.1021/ic0354320

    7. [7]

      Clérac R, Cotton F A, Daniels L M, et al. J. Am. Chem. Soc., 2000, 122:6226-6236  doi: 10.1021/ja000515q

    8. [8]

      Ismayilov R H, Wang W, Lee G H, et al. Dalton Trans., 2007, 21(27):2898-2907
       

    9. [9]

      Nippe M, Berry J F. J. Am. Chem. Soc., 2007, 129(42):12684-12685  doi: 10.1021/ja076337j

    10. [10]

      Nippe M, Turov Y, Berry J F. Inorg. Chem., 2011, 50(21):10592-10599  doi: 10.1021/ic2011309

    11. [11]

      Clérac R, Cotton F A, Daniels L M, et al. Inorg. Chem., 2000, 39(4):752-756

    12. [12]

      Cotton F A, Lei P, Murillo C A. Inorg. Chem. Acta, 2003, 349:173-181  doi: 10.1016/S0020-1693(03)00093-8

    13. [13]

      Yu L C, Lee G H, Sigrist M, et al. Eur. J. Inorg. Chem., 2016, 26:4250-4256

    14. [14]

      ZHI Sha-Sha, BAN Ying, XU Zhi-Guang, et al. Chem. J. Chinese Universities, 2019, 40(5):980-987
       

    15. [15]

      Spivak M, Lopez X, Graaf C D. J. Phys. Chem. A, 2019, 123:1538-1547  doi: 10.1021/acs.jpca.8b10124

    16. [16]

      Chipman J A, Berry J F. Inorg. Chem., 2018, 57:9354-9363  doi: 10.1021/acs.inorgchem.8b01331

    17. [17]

      Chipman J A, Berry J F. Chem.-Eur. J., 2018, 24:1494-1499  doi: 10.1002/chem.201704588

    18. [18]

      DeBrincat D, Keers O, McGrady J E. Chem. Commun., 2013, 49:9116-9118  doi: 10.1039/c3cc45063e

    19. [19]

      Cotton F A, Lei P, Murillo C A, et al. Inorg. Chem. Acta, 2003, 349(5):165-172
       

    20. [20]

      Liu I P C, Chen C H, Chen C F, et al. Chem. Commun., 2009, 7(5):577-579

    21. [21]

      HUANG Yan, HUANG Xiao, XU Xuan. Acta Phys.-Chim. Sin., 2013, 29(6):1225-1232  doi: 10.3866/PKU.WHXB201303181

    22. [22]

      Chang W C, Chang C W, Sigrist M, et al. Chem. Commun., 2017, 53:8886-8889  doi: 10.1039/C7CC05449A

    23. [23]

      DING Dan-Dan, XU Xuan, XU Zhi-Guang. Acta Phys.-Chim. Sin., 2015, 31(7):1323-1330
       

    24. [24]

      Becke A D. J. Chem. Phys., 1993, 98(7):5648-5652  doi: 10.1063/1.464913

    25. [25]

      Becke A D. Phys. Rev. A, 1988, 38(6):3098-3100  doi: 10.1103/PhysRevA.38.3098

    26. [26]

      Lee C, Yang W, Parr R G. Phys. Rev., 1988, 37:785-789  doi: 10.1103/PhysRevB.37.785

    27. [27]

      Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 03, Revision D.02, Gaussian Inc.: Wallingford, CT, 2003.

    28. [28]

      Pal K, Nakao K, Mashima K. Eur. J. Inorg. Chem., 2010, 36:5668-5674

    29. [29]

      Holste G, Schäfer H. Z. Anorg. Allg. Chem., 1972, 391:263-270  doi: 10.1002/zaac.19723910307

    30. [30]

      Cotton F A, Norman J G. J. Coord. Chem., 1972, 1:161-171  doi: 10.1080/00958977208070758

  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    3. [3]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    4. [4]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    5. [5]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    6. [6]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    7. [7]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    8. [8]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    9. [9]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    10. [10]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    11. [11]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    12. [12]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    13. [13]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    14. [14]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    15. [15]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    16. [16]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    17. [17]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    18. [18]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    19. [19]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    20. [20]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

Metrics
  • PDF Downloads(4)
  • Abstract views(403)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return