Citation: CHEN Qi-Hao, JING Zhao-Yang, SONG You. Magnetostructural Correlation and Antisymmetric Exchange of Spin Frustrated Triangular [Cu3] in Zero-Dimensional and Three-Dimensional Structure[J]. Chinese Journal of Inorganic Chemistry, ;2020, 36(4): 659-665. doi: 10.11862/CJIC.2020.066 shu

Magnetostructural Correlation and Antisymmetric Exchange of Spin Frustrated Triangular [Cu3] in Zero-Dimensional and Three-Dimensional Structure

  • Corresponding author: JING Zhao-Yang, MF1724017@smail.nju.edu.cn
  • Received Date: 24 September 2019
    Revised Date: 12 November 2019

Figures(10)

  • Quantum spin liquids are the third type of magnetism that has just been confirmed in recent years besides ferromagnets and antiferromagnets. They have attracted much attention in the fields of physics and materials because they are expected to explain the mechanism of high temperature superconductors and to change the storage mode of computer hard disk information. Spin frustration, as the smallest unit of quantum spin liquids, may be the key to solve many problems of quantum spin liquids. Based on the reported three-nuclear copper complexes, [Cu3(μ3-OH)(μ-OPz)3(NO3)2(H2O)2]·CH3OH (1) (HOPz=methyl(2-pyrazinyl)ketone oxime), we synthesized a three-dimensional metal-organic framework (MOF), {[Ag(HOPz)Cu3(μ3-OH)(NO3)3(OPz)2Ag(NO3)]·6H2O]}n (2). Their magnetic properties were analyzed in detail from the perspective of spin frustration by comparison. The magnetic studies indicate that there exists a strong antiferromagnetic interactions between spins and antisymmetric exchanges. The magnetic data are fitted and the magnetostructural correlation is studied by Hamiltonian containing isotropic and antisymmetric exchanges. The best fitting parameters obtained are:Jav=-426 cm-1, g=1.83, g//=2.00 for 1 and Jav=-401 cm-1, g=1.85, g//=2.00 for 2.
  • 加载中
    1. [1]

      Toulouse G. Commun. Phys., 1977, 2:115-119
       

    2. [2]

      Villain J. J. Phys. Chem. Solids, 1959, 11(3):303-309
       

    3. [3]

      CHEN Yun-Chun, LI Dan, MA Xing-Qiao. Physics and Engineering, 2007, 6:46-48
       

    4. [4]

      Diep H T. Frustrated Spin Systems. Singapore: World Scientific Publishing Co. Pte. Ltd., 2005.

    5. [5]

      Cao F, Wei R M, Li J, et al. Inorg. Chem., 2016, 55(12):5914 -5923  doi: 10.1021/acs.inorgchem.6b00255

    6. [6]

      Das L K, Drew M G B, Diaz C, et al. Dalton Trans., 2014, 43 (20):7589-7598  doi: 10.1039/C3DT53361A

    7. [7]

      Escuer A, Vlahopoulou G, Lloret F, et al. Eur. J. Inorg. Chem., 2014(1):83-92

    8. [8]

      Maity D, Mukherjee P, Ghosh A, et al. Eur. J. Inorg. Chem., 2010(5):807-813

    9. [9]

      Sarkar B, Ray M S, Drew M G B, et al. Polyhedron, 2006, 25 (16):3084-3094  doi: 10.1016/j.poly.2006.05.032

    10. [10]

      Vasylevs'kyy S I, Senchyk G A, Lysenko A B, et al. Inorg. Chem., 2014, 53(7):3642-3654  doi: 10.1021/ic403148f

    11. [11]

      Zhu T T, Sun W, Huang Y X, et al. J. Mater. Chem. C, 2014, 2(38):8170-8178  doi: 10.1039/C4TC01416B

    12. [12]

      Chakravorty A. Coord. Chem. Rev., 1974, 13(1):1-46  doi: 10.1016/S0010-8545(00)80250-7

    13. [13]

      Chaudhuri P. Coord. Chem. Rev., 2003, 243(1/2):143-190

    14. [14]

      Keeney M E, Osseo-Asare K, Woode K A. Coord. Chem. Rev., 1984, 59:141-201  doi: 10.1016/0010-8545(84)85054-7

    15. [15]

      Gatteschi D, Caneschi A, Sessoli R. NATO Advanced Science Institutes Series, Series E, Applied Sciences: Vol.206. Laine R M. Ed., Dordrecht: Kluwer Academic, 1992:147-160

    16. [16]

      Giri S, Maity D, Godsell J F, et al. Inorg. Chim. Acta, 2011, 377(1):99-104

    17. [17]

      Ruiz R, Lloret F, Julve M, et al. Inorg. Chim. Acta, 1998, 268(2):263-269

    18. [18]

      Zhang G Y, Ding B, Chai L, et al. Z. Anorg. Allg. Chem., 2014, 640(12/13):2492-2497

    19. [19]

      Bruker Analytical X-ray Systems, SMART & SAINT Software Reference Manuals, Ver. 6.45, Madison, WI, 2003.

    20. [20]

      Sheldrick G M. SADABS: Software for Empirical Absorption Correction, Ver. 2.05, University of Gttingen, Germany, 2002.

    21. [21]

      Sheldrick G M. SHELXL-97: Program for Crystal Structure Refinement, University of Göttingen, Germany, 1997.

    22. [22]

      Liu X M, de Miranda M P, McInnes E J L, et al. Dalton Trans., 2004(1):59-64  doi: 10.1039/B311980G

    23. [23]

      Yoon J, Mirica L M, Stack T D P, et al. J. Am. Chem. Soc., 2004, 126(39):12586-12595  doi: 10.1021/ja046380w

    24. [24]

      Mirica L M, Stack T D P. Inorg. Chem., 2005, 44(7):2131-2133  doi: 10.1021/ic048182b

    25. [25]

      Afrati T, Dendrinou-Samara C, Raptopoulou C, et al. Dalton Trans., 2007(44):5156-5164  doi: 10.1039/b708767e

    26. [26]

      Afrati T, Dendrinou-Samara C, Raptopoulou C, et al. Inorg. Chem., 2008, 47(17):7545-7555  doi: 10.1021/ic8003257

    27. [27]

      Afrati T, Pantazaki A A, Dendrinou-Samara C, et al. Dalton Trans., 2010, 39(3):765-775  doi: 10.1039/B914112J

    28. [28]

      Ferrer S, Lloret F, Pardo E, et al. Inorg. Chem., 2012, 51(2): 985-1001  doi: 10.1021/ic2020034

  • 加载中
    1. [1]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    2. [2]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    3. [3]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    4. [4]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    5. [5]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    6. [6]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    7. [7]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    8. [8]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    9. [9]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    10. [10]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    11. [11]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    12. [12]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    13. [13]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    14. [14]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    15. [15]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    16. [16]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

Metrics
  • PDF Downloads(6)
  • Abstract views(594)
  • HTML views(103)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return