Citation: ZHENG Xiao-Yuan, LIU Yang, LIU Yi, QIN Liu-Lei, WANG Le, LIU Zun-Qi. Synthesis, Phase Transition and Dielectric Properties of Ferrate Cyanogen(Ⅲ) Hydrogen-Bonding Supramolecular Crystal[J]. Chinese Journal of Inorganic Chemistry, ;2020, 36(3): 406-414. doi: 10.11862/CJIC.2020.049 shu

Synthesis, Phase Transition and Dielectric Properties of Ferrate Cyanogen(Ⅲ) Hydrogen-Bonding Supramolecular Crystal

Figures(10)

  • Synthesis of novel ferric cyanide hydrogen-bonding cage-like supramolecular crystal material (C3H5N2)3[Fe(CN)6]·2(18-crown-6)·2H2O (1) by solvent evaporation in methanol solution with imidazole, 18-crown-6 and ferric cyanide. The structure, thermal energy and electrical properties of the crystal were characterized by variable temperature X-ray diffraction single crystal diffraction, infrared spectroscopy, elemental analysis, thermogravimetric analysis (TG), differential scanning calorimetry (DSC) and dielectric constant test. The space group of the crystal is P21/c, which belongs to the monoclinic system at low temperatures. The crystal structure shows that the cyano-iron complex, the water molecule and the imidazolium cation form a three-dimensional cage structure with iron atoms as the apex in the form of hydrogen bonds. This resulted in phase transition at around 250 K and stepped reversible dielectric anomalies in a range of 220~260 K. Temperature variation triggers the cage structure abrupt change, and at the same time causes dynamic oscillation of supramolecules within the framework of[Fe(CN)6]3-, thus induces the phase transition of crystal structure. The phase transition temperature interval of the crystal structure was accompanied with step-like change in dielectric physical properties. The dielectric constant was reversible and changed from 38 to 43 with temperature increasing from 220 to 280 K. Above 270 K, the sudden jump in dielectric is caused by water vapor.
  • 加载中
    1. [1]

      Kong L H, Fu D W, Ye Q, et al. Chin. Chem. Lett., 2014, 25 (6):844-848

    2. [2]

      YANG Kang, TAN Yu-Hui, WANG Bin, et al. Chinese J. Inorg. Chem., 2019, 35 (4):703-710
       

    3. [3]

      Liu Z Q, Liu Y, Wang J F, et al. Inorg. Chem. Commun., 2015(61):109-112

    4. [4]

      Zhang W, Xiong R G. Chem. Rev., 2012, 112(2):1163-1195

    5. [5]

      Zhang W, Ye H Y, Xiong R G, et al. J. Am. Chem. Soc., 2013, 135(14):5230-5233

    6. [6]

      LI Xiang, ZHAO Huai-An, SU Jian, et al. Chinese J. Inorg. Chem., 2019, 35(1): 109-115
       

    7. [7]

      Gil D M, Carbonio R E, Gómez M I. J. Mol. Struct.: THEOCHEM, 2013, 1041:23-28

    8. [8]

      Li Q, Shi P P, Ye Q, et al. Inorg. Chem., 2015, 54(22):10642 -10647

    9. [9]

      Wong-Ng W, Culp J T, Chen Y S. Solid State Sci., 2016, 52 (1):1-9

    10. [10]

      Li L N, Sun Z H, Wang P, et al. Angew. Chem. Int. Ed., 2017, 129(40):12150-12154
       

    11. [11]

      ZHOU Xin, YE Jing, WANG Zhi-Hua, et al. Chinese J. Inorg. Chem., 2019, 35(1): 43-49
       

    12. [12]

      Wang X Q, Cheng X F, Zhang S J, et al. Physica B, 2010, 405(4):1071-1080
       

    13. [13]

      Hang T, Zhang W, Ye H Y, et al. Chem. Soc. Rev., 2011, 40 (7):3577-3598
       

    14. [14]

      Li L N, Shang X Y, Wang S S, et al. J. Am. Chem. Soc., 2018, 140(22):6806-6809

    15. [15]

      Ohshima Y, Kubo K, Matsumoto T, et al. CrystEngComm, 2016, 18(41):7959-7964

    16. [16]

      Li S G, Luo J H, Sun Z H, et al. Cryst. Growth. Des., 2013, 13(6):2675-2679
       

    17. [17]

      Jin Y, Yu C H, Wang Y F, et al. Z. Anorg. Allg. Chem., 2014, 640(7):1499-1505
       

    18. [18]

      Liu Z Q, Liu Y, Chen Y, et al. Chin. Chem. Lett., 2017, 28 (2):297-301

    19. [19]

      WANG Qi, CHENG Ming, CAO Yi-Han, et al. Acta Chim. Sinica, 2016, 74(1):9-16
       

    20. [20]

      Jin Y, Yu C H, Wang Y F, et al. Z. Anorg. Allg. Chem., 2014, 640(7):1499-1505
       

    21. [21]

      Jia H L, Jia M J, Yu J H, et al. Dalton. Trans., 2013, 42(18): 6429-6439

    22. [22]

      Ye H Y, Li S H, Zhang Y, et al. J. Am. Chem. Soc., 2014, 136(28):10033-10040
       

    23. [23]

      Xiao X W, Xu H, Xu W. Synth. Met., 2004, 144(1):51-53

    24. [24]

      Yoshida R, Kodama T, Kikuchi K, et al. Synth. Met., 2015, 208:43-48

    25. [25]

      Yu S S, Liu S X, Duan H B. Dalton Trans., 2015, 44(48): 20822-20825

    26. [26]

      ZHAO Wang, ZHENG Qing-Hua, PING Zhao-Yan, et al. Journal of Synthetic Crystals, 2019, 48(1):149-154
       

    27. [27]

      Sun Z H, Li J, Ji C M, et al. J. Am. Chem. Soc., 2017, 139 (44):15900-15906
       

    28. [28]

      Rok M, Prytys J K, Kinzhybalo V, et al. Dalton Trans., 2017, 46(7):2322-2331
       

    29. [29]

      Han X B, Hu P, Shi C, et al. J. Mol. Struct., 2017, 1127: 372-376
       

    30. [30]

      Tang Y Z, Gu Z F, Yang C S, et al. Chemistry Select, 2016, 1(22):6772-6776

    31. [31]

      Zhang W, Cai Y, Xiong R G, et al. Angew. Chem. Int. Ed., 2010, 49(37):6608-6610

    32. [32]

      Wang T T, Jia Y Y, Chen Q, et al. Sci. Chin. Chem., 2016, 59(8):959-964
       

    33. [33]

      González R, Acosta A, Chiozzone R, et al. Inorg. Chem., 2012, 51(10):5737-5747
       

    34. [34]

      ZHENG Xiao-Yuan, LIU Yang, QIN Liu-Lei, et al. Chinese J. Inorg. Chem., 2019, 35(02):277-284
       

    35. [35]

      Sheldrick G M. SHELXS-97, Program for Crystal Structure Refinement, University of Göttingen, Germany, 1997.

  • 加载中
    1. [1]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    2. [2]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    3. [3]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    4. [4]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    5. [5]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    6. [6]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    7. [7]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    8. [8]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    9. [9]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    10. [10]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    11. [11]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    12. [12]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    13. [13]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    14. [14]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    15. [15]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    16. [16]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    17. [17]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    18. [18]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    19. [19]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    20. [20]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

Metrics
  • PDF Downloads(7)
  • Abstract views(1243)
  • HTML views(247)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return