Citation: WANG Jing-Jing, ZAHNG Jiang, WANG Jin-Yue, WANG Lu, LI Xuan-Ke. Effect of Heat Treatment on Structure and Lithium Ion Storage Properties of N-Rich Carbon Nanofibers[J]. Chinese Journal of Inorganic Chemistry, ;2020, 36(1): 31-39. doi: 10.11862/CJIC.2020.026 shu

Effect of Heat Treatment on Structure and Lithium Ion Storage Properties of N-Rich Carbon Nanofibers

  • Corresponding author: ZAHNG Jiang, zhangjiang@wust.edu.cn
  • Received Date: 29 July 2019
    Revised Date: 13 November 2019

Figures(11)

  • Carbon nanofibers (CNFs) were prepared from polyacrylonitrile (PAN) via electrospinning followed by stabilization and carbonization. The morphology and structure of the carbon nanofibers were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), and X-ray photo-electron spectroscopy (XPS). The electrochemical properties were investigated as anode material in lithium ion batteries (LIBs). A systematic study was made to confirm the effect of the nitrogen species on the performance of lithium ion storage and the capacities of anodes in LIBs. It is noticed that the structure change has a great influence on the storage position of lithium ion in CNFs electrode. The results showed that lithium ions can be stored not only between the graphitized carbon layers, but also in the defects caused by the functionalization of nitrogen, the latter was mainly because the improvement of the electrochemical performance of LIBs due to the N-doping of carbon materials. There is a strong correlation between the atomic structure, with lithium ion storage behavior and electrochemical properties of anode materials. It is revealed that thermal annealing had an important effect on the atomic structure and morphology of CNFs. A high temperature treatment promoted graphitization and improved electrical conductivity through the growth of aromatic groups. During the transition from amorphous carbon to graphite structure at high temperature, defects and heteroatoms were removed with the decrease of nitrogen contents. Therefore, CNFs obtained at high carbonization temperature may have high lithium ion storage capacity between graphene layers, but it failed to provide attractive capacity due to low nitrogen content. An optimized carbonization temperature of 600℃ was identified, the electrode gave rise to a sufficiently high nitrogen content and thus a high capacity about 560 mAh·g-1 after 200 cycles at the current density of 0.1 A·g-1, the specific capacity at the high current density of 1 A·g-1 even still remained 200 mAh·g-1 after 1 000 cycles.
  • 加载中
    1. [1]

      Zhang B, Kang F Y, Tarascon J M, et al. Prog. Mater Sci., 2016, 76:319-380  doi: 10.1016/j.pmatsci.2015.08.002

    2. [2]

      Liu Q, Zhu J H, Zhang L W, et al. Renewable Sustainable Energy Rev., 2018, 81:1825-1858  doi: 10.1016/j.rser.2017.05.281

    3. [3]

      Goodenough J B. Energy Environ. Sci., 2014, 7(1):14-18

    4. [4]

      Frackowiak E, Béguin F. Carbon, 2001, 39(6):937-950  doi: 10.1016/S0008-6223(00)00183-4

    5. [5]

      Yoo E, Kim J, Hosono E, et al. Nano Lett., 2008, 8(8):2277-2282  doi: 10.1021/nl800957b

    6. [6]

      Mitchell R R, Gallant B M, Thompson C V, et al. Energy Environ. Sci., 2011, 4(8):2952-2958  doi: 10.1039/c1ee01496j

    7. [7]

      Wen Z H, Wang Q, Zhang Q, et al. Adv. Funct. Mater., 2007, 17(15):2772-2778  doi: 10.1002/adfm.200600739

    8. [8]

      Zheng G Y, Yang Y, Cha J J, et al. Nano Lett., 2011, 11(10):4462-4467  doi: 10.1021/nl2027684

    9. [9]

      Wu L, Lu H Y, Xiao L F, et al. J. Mater. Chem. A, 2014, 2(39):16424-16428  doi: 10.1039/C4TA03365E

    10. [10]

      Han Y, Zou J, Li Z, et al. ACS Nano, 2018, 12(5):4835-4843  doi: 10.1021/acsnano.8b01558

    11. [11]

      Guo J, Liu J, Dai H, et al. J. Colloid Interface Sci., 2017, 507:154-161  doi: 10.1016/j.jcis.2017.07.117

    12. [12]

      Paek S M, Yoo E, Honma I. Nano Lett., 2009, 9(1):72-75  doi: 10.1021/nl802484w

    13. [13]

      Yu C J, Masarapu C, Rong J P, et al. Adv. Mater., 2009, 21(47):4793-4797  doi: 10.1002/adma.200901775

    14. [14]

      Hu L B, Wu H, La Mantia F, et al. ACS Nano, 2010, 4(10):5843-5848  doi: 10.1021/nn1018158

    15. [15]

      Zhang B, Zheng Q B, Huang Z D, et al. Carbon, 2011, 49(13):4524-4534  doi: 10.1016/j.carbon.2011.06.059

    16. [16]

      Qie L, Chen W M, Wang Z H, et al. Adv. Mater., 2012, 24(15):2047-2050  doi: 10.1002/adma.201104634

    17. [17]

      Su D S, Schlgl R. ChemSusChem, 2010, 3(2):136-168  doi: 10.1002/cssc.200900182

    18. [18]

      Mao X W, Hatton T A, Rutledge G C. Curr. Org. Chem., 2013, 17(13):1390-1401  doi: 10.2174/1385272811317130006

    19. [19]

      Jiang S H, Chen Y M, Duan G G, et al. Polym. Chem., 2018, 9(20):2685-2720  doi: 10.1039/C8PY00378E

    20. [20]

      Wang C H, Kaneti Y V, Bando Y, et al. Mater. Horiz., 2018, 5(3):394-407  doi: 10.1039/C8MH00133B

    21. [21]

      Yuan C P, Wu Q, Shao Q, et al. J. Colloid Interface Sci., 2018, 517:72-79  doi: 10.1016/j.jcis.2018.01.095

    22. [22]

      Kim C, Yang K S, Kojima M, et al. Adv. Funct. Mater., 2006, 16(18):2393-2397  doi: 10.1002/adfm.200500911

    23. [23]

      ZHANG Ye-Qiong, CONG Ye, ZHANG Jing, et al. Chinese J. Inorg. Chem., 2018, 34(8):41-47
       

    24. [24]

      Li P, Hwang J Y, Sun Y K, et al. ACS Nano, 2019, 13(2):2624-2633

    25. [25]

      Sun F G, Wang J T, Chen H C, et al. ACS Appl. Mater. Interfaces, 2013, 5(12):5630-5638  doi: 10.1021/am400958x

    26. [26]

      Oh J, Lee J, Jeon Y, et al. ACS Sustainable Chem. Eng., 2019, 7(1):306-314  doi: 10.1021/acssuschemeng.8b03390

    27. [27]

      Wang S X, Yang L P, Stubbs L P, et al. ACS Appl. Mater. Interfaces, 2013, 5(23):12275-12282  doi: 10.1021/am4043867

    28. [28]

      Xia J, Jiang K Z, Xie J J, et al. Chem. Eng. J., 2019, 359:1244-1251  doi: 10.1016/j.cej.2018.11.053

    29. [29]

      Wang Y, Santiago-Avilés J J, et al. IEEE Trans. Nanotechnol., 2003, 2(1):39-43  doi: 10.1109/TNANO.2003.808510

    30. [30]

      Wang Y, Serrano S, Santiago-Avilés J J, Furlan R, et al. Synth. Met., 2003, 138(3):423-427  doi: 10.1016/S0379-6779(02)00472-1

    31. [31]

      Wei D C, Liu Y Q, Wang Y, et al. Nano Lett., 2009, 9(5):1752-1758  doi: 10.1021/nl803279t

    32. [32]

      Laffont L, Monthioux M, Serin V, et al. Carbon, 2004, 42(12):2485-2494

    33. [33]

      Plomp A J, Su D S, De Jong K P, et al. J. Phys. Chem. C, 2009, 113(22):9865-9869  doi: 10.1021/jp900637q

    34. [34]

      Liu Y C, Zhang N, Liu X B, et al. Energy Storage Mater., 2017, 9:170-178  doi: 10.1016/j.ensm.2017.07.012

    35. [35]

      Su F B, Poh C K, Chen J S, et al. Energy Environ. Sci., 2011, 4(3):717-724  doi: 10.1039/C0EE00277A

  • 加载中
    1. [1]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    5. [5]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    6. [6]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    7. [7]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    8. [8]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    9. [9]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    10. [10]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    11. [11]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    12. [12]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    13. [13]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    16. [16]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    17. [17]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    18. [18]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    19. [19]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    20. [20]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

Metrics
  • PDF Downloads(2)
  • Abstract views(646)
  • HTML views(62)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return