Citation: HOU Xiao-Fei, ZHAO Wan-Nan, MA Jing, SUN Ji-Qiang, LI Yan-Hong. Synthesis and Luminescence Properties of Eu3+ doped LaBO3 Phosphors[J]. Chinese Journal of Inorganic Chemistry, ;2020, 36(2): 276-282. doi: 10.11862/CJIC.2020.016 shu

Synthesis and Luminescence Properties of Eu3+ doped LaBO3 Phosphors

  • Corresponding author: LI Yan-Hong, lyhciom@126.com
  • Received Date: 3 August 2019
    Revised Date: 8 November 2019

Figures(9)

  • LaBO3:Eu3+ phosphors with different crystal phase were prepared by heat treatment precursor prepared by hydrothermal method. The structure, morphology and luminescence properties of the samples were characterized with X-ray diffraction (XRD), field emission scanning electron microscopy (SEM), infrared spectroscopy and fluorescence spectroscopy. The effects of boric acid dosage, heat treatment temperature, and initial solution pH of precursor on structure and luminescence properties of the samples were studied. The results of XRD showed that the phosphors with orthogonal structure, monoclinic structure and both phase mixed structure can be obtained. LaBO3 with pure orthogonal structure can be obtained by heating treatment at 700℃ for precursors synthesized with initial solution pH=8 and molar ratio of rare earth ions to boric acid of 1:3 and 1:4, respectively. It is convenient to obtained phosphors with orthogonal structure at proper boric acid dosage, higher heat treatment temperature and higher initial solution pH value. Infrared spectra showed that the change of initial solution pH and boric acid dosage effected the composition of precursor, and the heat treatment temperature effected the crystal phase transformation. SEM showed that particle size of LaBO3:Eu3+ phosphor decreased with the increase of initial solution pH, which were consistent with the results calculated from XRD. The excitation spectra of samples consisted of the broad band in a range of 200~350 nm and another weak narrow lines in a range of 350~450 nm, which were assigned to O2--Eu3+ charge transfer band and f-f transitions of Eu3+ ions, respectively. The emission spectra of samples consisted of sharp lines ranging from 500 to 750 nm, which are associated with the transitions from the excited 5D0-7FJ (J=1, 2, 3, 4) of Eu3+ ions. The main emission peak at 615 nm was due to the 5D0-7F2 transitions of Eu3+, the peak at 593 nm was attributed to 5D0-7F1 transitions of Eu3+. The excitation and emission intensities are related to the structure of the samples. LaBO3:Eu3+ with orthogonal structure has higher ultraviolet absorption and higher emission intensity with pure red light.
  • 加载中
    1. [1]

      NING Hong-Yu, CHEN Zhi-Yuan, DONG Chao, et al. Chinese Journal of Luminescence, 2018, 39(8):1087-1094
       

    2. [2]

      WU Zhan-Chao, WANG Shuai, LIU Jie. New Chemical Materials, 2015, 43(13):13-15
       

    3. [3]

      Wang D Y, Chen T M, Cheng B M. Inorg. Chem., 2012, 51:2961-2965  doi: 10.1021/ic202241h

    4. [4]

      Wei H W, Shao L M, Jiao H, et al. Opt. Mater., 2018, 75:442-447  doi: 10.1016/j.optmat.2017.10.011

    5. [5]

      Lakshmanan A, Bhaskar R S, Thomas P C, et al. Mater. Lett., 2010, 64:1809-1812  doi: 10.1016/j.matlet.2010.05.034

    6. [6]

      ZHU Fan, YOU Fang-Tian, SHI Qiu-Feng, et al. Chinese Journal of Luminescence, 2015, 36(7):751-756
       

    7. [7]

      Srivastava S, Mondal A, Sahu N K, et al. RSC Adv., 2015, 5:11009-11012  doi: 10.1039/C4RA12745E

    8. [8]

      GAO Rong, ZHANG Zhi-Jun, ZHAO Jing-Tai. J. Chin. Rare Earth Soc., 2014, 32(4):387-396
       

    9. [9]

      MA Jing, ZHAO Wan-Nan, LI Yan-Hong. Chinese Journal of Luminescence, 2018, 39(9):1213-1219
       

    10. [10]

      ZHAO Wan-Nan, MA Jing, ZHANG Zhen-Qian, et al. Journal of the Chinese Ceramic Society, 2017, 45(4):526-541
       

    11. [11]

      Sari S, Senberber F T, Meral Y, et al. Mater. Chem. Phys., 2017, 200:196-203  doi: 10.1016/j.matchemphys.2017.07.056

    12. [12]

      Liang P, Liu J W, Liu Z H. RSC Adv., 2016, 6:89113-89123  doi: 10.1039/C6RA19101K

    13. [13]

      Grzyb T, Kubasiewicz K, Szczeszak A, et al. Dalton Trans., 2015, 44:4063-4069  doi: 10.1039/C4DT03667K

    14. [14]

      Yi H, Wu L, Wu L W, et al. Inorg. Chem., 2016, 55:6487-6495  doi: 10.1021/acs.inorgchem.6b00552

    15. [15]

      LI Qi-Hua, LIU Li-Min, ZENG Li-Hua, et al. Chinese Journal of Luminescence, 2006, 27(2):183-186  doi: 10.3321/j.issn:1000-7032.2006.02.009

    16. [16]

      Rambabu U, Han S D. RSC Adv., 2013, 3:1368-1379  doi: 10.1039/C2RA21304D

    17. [17]

      DONG Yan, JIANG Jian-Qing, XIAO Rui, et al. J. Chin. Rare Earth Soc., 2004, 22(4):201-205
       

    18. [18]

      Zeng Y B, Li Z Q, Liang Y F, et al. Inorg. Chem., 2013, 52:9590-9596  doi: 10.1021/ic401299h

    19. [19]

      YIN Xin-Hao, LI Yun-Hui, GAO Ying, et al. Chinese J. Inorg. Chem., 2014, 30(9):2064-2074
       

    20. [20]

      GUO Fan, FU Pei-Zhen, WANG Jun-Xin, et al. J. Synth Cryst, 2000, 29(5):16
       

    21. [21]

      LI Lin-Yan, LI Bao-Guo, LIAO Fu-Hui, et al. Acta Phys.-Chim. Sin., 2005, 21(7):769-773  doi: 10.3866/PKU.WHXB20050714

    22. [22]

      Jia G, Zhang C M, Wang C Z, et al. CrystEngComm, 2012, 14:579-584  doi: 10.1039/C1CE05973D

    23. [23]

      Gadsden J A. Infrared Spectra of Minerals and Related Inorganic Compounds. London:Butterworth, 1975.

    24. [24]

      Qin C X, Qin L, Chen G Q, et al. J. Nanopart. Res., 2013, 15:1827-1836  doi: 10.1007/s11051-013-1827-7

    25. [25]

      Shmyt'ko I M, Kiryakin I N, Strukova G K. Phys. Solid State, 2013, 55(7):1468-147  doi: 10.1134/S1063783413070305

    26. [26]

      Cansin B, Okan E, Aysen Y. Solid State Sci., 2012, 14:1710-1716  doi: 10.1016/j.solidstatesciences.2012.07.026

  • 加载中
    1. [1]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    2. [2]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    3. [3]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    4. [4]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    5. [5]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    6. [6]

      Hengyi ZHULiyun JUHaoyue ZHANGJiaxin DUYutong XIELi SONGYachao JINMingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358

    7. [7]

      Haoying ZHAILanzong WENWenjie LIAOQin LIWenjun ZHOUKun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320

    8. [8]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    9. [9]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    10. [10]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    11. [11]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    12. [12]

      Hongzhi Zhang Hong Li Asif Ali Haider Junpeng Li Zhi Xie Hongming Jiang Conglin Liu Rui Wang Jing Zhu . An unexpected role of lanthanide substitution in thermally responsive phosphors NaLnTe2O7: Eu3+ (Ln = Y and Gd). Chinese Journal of Structural Chemistry, 2025, 44(2): 100509-100509. doi: 10.1016/j.cjsc.2024.100509

    13. [13]

      Siyu ZongXiaowei YuYining YangXin YangJiyang Li . Multi-mode luminescence anti-counterfeiting and visual iron(Ⅲ) ions RTP detection constructed by assembly of CDs&Eu3+ in porous RHO zeolite. Chinese Chemical Letters, 2025, 36(6): 110343-. doi: 10.1016/j.cclet.2024.110343

    14. [14]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    15. [15]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    16. [16]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    17. [17]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    18. [18]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    19. [19]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    20. [20]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

Metrics
  • PDF Downloads(25)
  • Abstract views(3115)
  • HTML views(609)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return