Citation: HOU Xiao-Fei, ZHAO Wan-Nan, MA Jing, SUN Ji-Qiang, LI Yan-Hong. Synthesis and Luminescence Properties of Eu3+ doped LaBO3 Phosphors[J]. Chinese Journal of Inorganic Chemistry, ;2020, 36(2): 276-282. doi: 10.11862/CJIC.2020.016 shu

Synthesis and Luminescence Properties of Eu3+ doped LaBO3 Phosphors

  • Corresponding author: LI Yan-Hong, lyhciom@126.com
  • Received Date: 3 August 2019
    Revised Date: 8 November 2019

Figures(9)

  • LaBO3:Eu3+ phosphors with different crystal phase were prepared by heat treatment precursor prepared by hydrothermal method. The structure, morphology and luminescence properties of the samples were characterized with X-ray diffraction (XRD), field emission scanning electron microscopy (SEM), infrared spectroscopy and fluorescence spectroscopy. The effects of boric acid dosage, heat treatment temperature, and initial solution pH of precursor on structure and luminescence properties of the samples were studied. The results of XRD showed that the phosphors with orthogonal structure, monoclinic structure and both phase mixed structure can be obtained. LaBO3 with pure orthogonal structure can be obtained by heating treatment at 700℃ for precursors synthesized with initial solution pH=8 and molar ratio of rare earth ions to boric acid of 1:3 and 1:4, respectively. It is convenient to obtained phosphors with orthogonal structure at proper boric acid dosage, higher heat treatment temperature and higher initial solution pH value. Infrared spectra showed that the change of initial solution pH and boric acid dosage effected the composition of precursor, and the heat treatment temperature effected the crystal phase transformation. SEM showed that particle size of LaBO3:Eu3+ phosphor decreased with the increase of initial solution pH, which were consistent with the results calculated from XRD. The excitation spectra of samples consisted of the broad band in a range of 200~350 nm and another weak narrow lines in a range of 350~450 nm, which were assigned to O2--Eu3+ charge transfer band and f-f transitions of Eu3+ ions, respectively. The emission spectra of samples consisted of sharp lines ranging from 500 to 750 nm, which are associated with the transitions from the excited 5D0-7FJ (J=1, 2, 3, 4) of Eu3+ ions. The main emission peak at 615 nm was due to the 5D0-7F2 transitions of Eu3+, the peak at 593 nm was attributed to 5D0-7F1 transitions of Eu3+. The excitation and emission intensities are related to the structure of the samples. LaBO3:Eu3+ with orthogonal structure has higher ultraviolet absorption and higher emission intensity with pure red light.
  • 加载中
    1. [1]

      NING Hong-Yu, CHEN Zhi-Yuan, DONG Chao, et al. Chinese Journal of Luminescence, 2018, 39(8):1087-1094
       

    2. [2]

      WU Zhan-Chao, WANG Shuai, LIU Jie. New Chemical Materials, 2015, 43(13):13-15
       

    3. [3]

      Wang D Y, Chen T M, Cheng B M. Inorg. Chem., 2012, 51:2961-2965  doi: 10.1021/ic202241h

    4. [4]

      Wei H W, Shao L M, Jiao H, et al. Opt. Mater., 2018, 75:442-447  doi: 10.1016/j.optmat.2017.10.011

    5. [5]

      Lakshmanan A, Bhaskar R S, Thomas P C, et al. Mater. Lett., 2010, 64:1809-1812  doi: 10.1016/j.matlet.2010.05.034

    6. [6]

      ZHU Fan, YOU Fang-Tian, SHI Qiu-Feng, et al. Chinese Journal of Luminescence, 2015, 36(7):751-756
       

    7. [7]

      Srivastava S, Mondal A, Sahu N K, et al. RSC Adv., 2015, 5:11009-11012  doi: 10.1039/C4RA12745E

    8. [8]

      GAO Rong, ZHANG Zhi-Jun, ZHAO Jing-Tai. J. Chin. Rare Earth Soc., 2014, 32(4):387-396
       

    9. [9]

      MA Jing, ZHAO Wan-Nan, LI Yan-Hong. Chinese Journal of Luminescence, 2018, 39(9):1213-1219
       

    10. [10]

      ZHAO Wan-Nan, MA Jing, ZHANG Zhen-Qian, et al. Journal of the Chinese Ceramic Society, 2017, 45(4):526-541
       

    11. [11]

      Sari S, Senberber F T, Meral Y, et al. Mater. Chem. Phys., 2017, 200:196-203  doi: 10.1016/j.matchemphys.2017.07.056

    12. [12]

      Liang P, Liu J W, Liu Z H. RSC Adv., 2016, 6:89113-89123  doi: 10.1039/C6RA19101K

    13. [13]

      Grzyb T, Kubasiewicz K, Szczeszak A, et al. Dalton Trans., 2015, 44:4063-4069  doi: 10.1039/C4DT03667K

    14. [14]

      Yi H, Wu L, Wu L W, et al. Inorg. Chem., 2016, 55:6487-6495  doi: 10.1021/acs.inorgchem.6b00552

    15. [15]

      LI Qi-Hua, LIU Li-Min, ZENG Li-Hua, et al. Chinese Journal of Luminescence, 2006, 27(2):183-186  doi: 10.3321/j.issn:1000-7032.2006.02.009

    16. [16]

      Rambabu U, Han S D. RSC Adv., 2013, 3:1368-1379  doi: 10.1039/C2RA21304D

    17. [17]

      DONG Yan, JIANG Jian-Qing, XIAO Rui, et al. J. Chin. Rare Earth Soc., 2004, 22(4):201-205
       

    18. [18]

      Zeng Y B, Li Z Q, Liang Y F, et al. Inorg. Chem., 2013, 52:9590-9596  doi: 10.1021/ic401299h

    19. [19]

      YIN Xin-Hao, LI Yun-Hui, GAO Ying, et al. Chinese J. Inorg. Chem., 2014, 30(9):2064-2074
       

    20. [20]

      GUO Fan, FU Pei-Zhen, WANG Jun-Xin, et al. J. Synth Cryst, 2000, 29(5):16
       

    21. [21]

      LI Lin-Yan, LI Bao-Guo, LIAO Fu-Hui, et al. Acta Phys.-Chim. Sin., 2005, 21(7):769-773  doi: 10.3866/PKU.WHXB20050714

    22. [22]

      Jia G, Zhang C M, Wang C Z, et al. CrystEngComm, 2012, 14:579-584  doi: 10.1039/C1CE05973D

    23. [23]

      Gadsden J A. Infrared Spectra of Minerals and Related Inorganic Compounds. London:Butterworth, 1975.

    24. [24]

      Qin C X, Qin L, Chen G Q, et al. J. Nanopart. Res., 2013, 15:1827-1836  doi: 10.1007/s11051-013-1827-7

    25. [25]

      Shmyt'ko I M, Kiryakin I N, Strukova G K. Phys. Solid State, 2013, 55(7):1468-147  doi: 10.1134/S1063783413070305

    26. [26]

      Cansin B, Okan E, Aysen Y. Solid State Sci., 2012, 14:1710-1716  doi: 10.1016/j.solidstatesciences.2012.07.026

  • 加载中
    1. [1]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    2. [2]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    3. [3]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    4. [4]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    5. [5]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    8. [8]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    9. [9]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    10. [10]

      Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391

    11. [11]

      Lingling SuQunyan WuCongzhi WangJianhui LanWeiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402

    12. [12]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    13. [13]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    14. [14]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    15. [15]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    16. [16]

      Jisheng LiuJunli ChenXifeng ZhangYin WuXin QiJie WangXiang Gao . Red blood cell membrane-coated FLT3 inhibitor nanoparticles to enhance FLT3-ITD acute myeloid leukemia treatment. Chinese Chemical Letters, 2024, 35(9): 109779-. doi: 10.1016/j.cclet.2024.109779

    17. [17]

      Kun ZouYihang XiaoJinyu YangMingxuan Wu . Facile semisynthesis of histone H3 enables nucleosome probes for investigation of histone H3K79 modifications. Chinese Chemical Letters, 2024, 35(10): 109497-. doi: 10.1016/j.cclet.2024.109497

    18. [18]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    19. [19]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    20. [20]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

Metrics
  • PDF Downloads(16)
  • Abstract views(2078)
  • HTML views(272)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return