Citation: XIE Yan-Yan, SUN Hong-Juan, PENG Tong-Jiang, LUO Li-Ming, TIAN Jing-Fei, QIN Ya-Ting. High Expansion Rate Expanded Vermiculite: Preparation by Chemical-Microwave Method and the Adsorption Mechanism of Methylene Blue[J]. Chinese Journal of Inorganic Chemistry, ;2020, 36(1): 113-122. doi: 10.11862/CJIC.2020.004 shu

High Expansion Rate Expanded Vermiculite: Preparation by Chemical-Microwave Method and the Adsorption Mechanism of Methylene Blue

  • Corresponding author: SUN Hong-Juan, sunhongjuan@swust.edu.cn
  • Received Date: 7 July 2019
    Revised Date: 16 October 2019

Figures(8)

  • In order to improve the application efficiency of vermiculite and broaden its application field, high expansion rate expanded vermiculite (HEV) was prepared by chemical-microwave method based on the excellent thermal expansion and cation exchange properties of industrial vermiculite and the adsorption properties of methylene blue (MB) were studied by comparative analysis. The experimental results showed that the HEV has a high expansion rate (K=60 times), large specific surface area (80 m2·g-1), and the pore diameter was mainly distributed between 2 and 5 nm. The crystalline formof vermiculite, hydrophlogopite and phlogopite were still maintained, and the cation exchange capacity increased to 1.005 mmol·g-1 from the original 0.835 mmol·g-1. The adsorption capacity of HEV was influenced by the initial concentration of MB, adsorption time, solution pH and adsorption temperature. When the initial concentration of MB solution was 300 mg·L-1, the adsorption time was 240 min, the pH value was 9, the adsorption temperature was 298 K, and the adsorption capacity was 419.87 mg·g-1, much higher than the original vermiculite ore. The adsorption process conforms to the Langmuir model and the pseudo-second order kinetic model, and is a spontaneous and disordered endothermic reaction process with single molecular layer adsorption and low adsorption barrier. Removal of HEV effect on MB has surpassed that of some natural minerals as well as commercial-grade activated carbon, indicating that HEV is an efficient, low-cost cationic dye waste water adsorbent.
  • 加载中
    1. [1]

      XU Rong-Qi, CAO Jun-Chen. Acta Miner-alogica Sinica, 1993, 13(1):39-47

    2. [2]

      PENG Tong-Jiang, WAN Pu, PAN Zhao-Lu, et al. Acta Petrologica et Mineralogica, 1996, 15(3):250-258

    3. [3]

      Marcos C, Rodríguez I. Appl. Clay Sci., 2014, 87(4):219-227

    4. [4]

      Hillier S, Marwa E M M, Rice C M. Clay Miner., 2013, 48(4):563-582  doi: 10.1180/claymin.2013.048.4.01

    5. [5]

      Crini G. Bioresour. Technol., 2006, 97(9):1061-1085  doi: 10.1016/j.biortech.2005.05.001

    6. [6]

      CAO Yu-Cheng, SHAN Sheng-Dao, ZHANG Miao-Xian, et al. Environ. Sci. Technol., 2009, 32(11):32-36  doi: 10.3969/j.issn.1003-6504.2009.11.008

    7. [7]

      Duman O, Tun S, Polat T G. Appl. Clay Sci., 2015, 109:22-32

    8. [8]

    9. [9]

      Marcos C, Rodríguez I. Appl. Clay Sci., 2011, 51(1/2):33-37

    10. [10]

      Lee T. Water Air Soil Pollut., 2012, 223(6):3399-3408  doi: 10.1007/s11270-012-1119-3

    11. [11]

      Marcos C, Rodríguez I. Appl. Clay Sci., 2014, 90(12):96-100

    12. [12]

      Freitas E D D, Almeida H J D. Appl. Clay Sci., 2017, 146:503-509  doi: 10.1016/j.clay.2017.07.004

    13. [13]

      Marcos C, Menéndez R, Rodríguez I. Appl. Clay Sci., 2017, 150:147-152  doi: 10.1016/j.clay.2017.09.026

    14. [14]

      WANG Meng-Meng, QI Yu, LI Hong-Ling, et al. Journal of Shihezi University:Natural Science, 2016, 34(3):367-371

    15. [15]

      ZHAO Shuang-Meng, PENG Tong-Jiang, SUN Hong-Juan. Journal of Mineralogy and Petrology, 2006, 26(2):30-34  doi: 10.3969/j.issn.1001-6872.2006.02.005

    16. [16]

      ZHAO Shuang-Meng, PENG Tong-Jiang, SUN Hong-Juan. Conservation and Utilization of Mineral Resources, 2006(3):22-25  doi: 10.3969/j.issn.1001-0076.2006.03.005

    17. [17]

      Ferdousi B N, Islam M M, Okajima T, et al. Electrochim. Acta, 2008, 53(2):968-974

    18. [18]

      Na Z, Qian X. Procedia Eng., 2012, 45(2):526-532

    19. [19]

    20. [20]

      PENG Tong-Jiang, SUN Hong-Juan, SUN Jin-Mei, et al. Journal of Mineralogy and Petrology, 2009, 29(1):14-19  doi: 10.3969/j.issn.1001-6872.2009.01.003

    21. [21]

      Tu S X, GuoZ F, Sun J H. Pedosphere, 2007, 17(4):457-466  doi: 10.1016/S1002-0160(07)60055-1

    22. [22]

      Neimark A V, Sing K S W, Thommes M. Surface Area and Porosity. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2008.

    23. [23]

      Andrew M, David H, John P, et al. Dyes Pigm., 2011, 88(2):149-155  doi: 10.1016/j.dyepig.2010.05.015

    24. [24]

      Doǧan M, Alkan M, Türkyilmaz A, et al. J. Hazard. Mater., 2004, 109(1/2/3):141-148

    25. [25]

      Özcan A S, Erdem B, Özcan A. Colloids Surf. A, 2005, 266(1/2/3):73-81

    26. [26]

      Almeida C a P, Debacher N A, Downs A J, et al. Colloid Interface Sci., 2009, 332(1):46-53  doi: 10.1016/j.jcis.2008.12.012

    27. [27]

      Doǧan M, Alkan M, Onganer Y. Water Air Soil Pollut., 2000, 120(3/4):229-248  doi: 10.1023/A:1005297724304

    28. [28]

      Al-Ghouti M, Khraisheh M, Allen S, et al. J. Environ. Manage., 2003, 69(3):229-238  doi: 10.1016/j.jenvman.2003.09.005

    29. [29]

      Bestani B, Benderdouche N, Benstaali B, et al. Bioresour. Technol., 2008, 99(17):8441-8444  doi: 10.1016/j.biortech.2008.02.053

    30. [30]

      Kannan N, Sundaram M M. Dyes Pigm., 2001, 51(1):25-40  doi: 10.1016/S0143-7208(01)00056-0

    31. [31]

      Gücek A, ener S, Bilgen S, et al. J. Colloid Interface Sci., 2005, 286(1):53-60  doi: 10.1016/j.jcis.2005.01.012

    32. [32]

      Langmuir I. J. Am. Chem. Soc., 1916, 184(5):102-105

    33. [33]

      Rouquerol F, Rouquerol J, Sing K. Adsorption by Powders and Porous Solids. Pittsburgh: Academic Press, 2014.

    34. [34]

      ZHU Hong-Yu, YANG Han-Pei, SUN Hui-Hua, et al. Chinese J. Inorg. Chem., 2018, 34(3):445-453
       

    35. [35]

      Weber T W, Chakravorti R K. AIChE J., 1974, 20(2):228-238  doi: 10.1002/aic.690200204

    36. [36]

      LI Jun, WANG Lu-Xiang, CAO Ya-Li, et al. Chinese J. Inorg. Chem., 2016, 32(9):1603-1610
       

    37. [37]

      Doǧan M, Alkan M, DemirbasÖ, et al. Chem. Eng. J., 2006, 124(1):89-101

    38. [38]

      Ho Y S, Mckay G. Chem. Eng. J., 1998, 70(2):115-124  doi: 10.1016/S0923-0467(98)00076-1

    39. [39]

      WU Cai-Hong, ZHENG Guo-Yuan, WANG Ji-Lin, et al. Chinese J. Inorg. Chem., 2019, 35(3):449-458
       

    40. [40]

      LIU Feng-Xian, SHAO Meng-Meng, XIA Sheng-Jie, et al. Chinese J. Inorg. Chem., 2015, 31(7):1342-1350
       

    41. [41]

      Yu X B, Wei C H, Wu H Z. Sep. Purif. Technol., 2015, 156:489-495  doi: 10.1016/j.seppur.2015.10.039

    42. [42]

      Stawiński W, Freitas O, Chmielarz L, et al. Chemosphere, 2016, 153:115-129  doi: 10.1016/j.chemosphere.2016.03.004

    43. [43]

      Sonntag R E, Borgnakke C. Introduction to Chemical Engin-eering Thermodynamics. Beijing:Chemical Industry Press, 2014:e62-e70

    44. [44]

      Sarma G K, Sengupta S, Bhattacharyya K G. Water Air Soil Pollut., 2018, 229(10):312  doi: 10.1007/s11270-018-3971-2

  • 加载中
    1. [1]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    2. [2]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    3. [3]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    4. [4]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    5. [5]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    6. [6]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    7. [7]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    8. [8]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    9. [9]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    10. [10]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    11. [11]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    12. [12]

      Yichang Liu Li An Dan Qu Zaicheng Sun . “双碳”背景下的综合设计实验——以PbCrO4催化甲基蓝的光降解速率常数测定为例. University Chemistry, 2025, 40(6): 222-229. doi: 10.12461/PKU.DXHX202407105

    13. [13]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    14. [14]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    15. [15]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    16. [16]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    17. [17]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    18. [18]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    19. [19]

      Jianan Zhang Mengzhen Xu Jiamin Liu Yufei He . 面向“双碳”目标的脱氯吸附剂开发研究型综合实验设计. University Chemistry, 2025, 40(6): 248-255. doi: 10.12461/PKU.DXHX202408068

    20. [20]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

Metrics
  • PDF Downloads(13)
  • Abstract views(2120)
  • HTML views(480)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return