Citation: WANG Ya-Qin, ZHANG Hai-Xia, ZHANG Shu-Heng, HE Wei, GE Fang-Yuan, CHEN Yu-Xin, GU Zhi-Guo. Synthesis and Gelation Ability of Spin-Crossover Iron(Ⅱ) Alkyl Imidazole Complexes[J]. Chinese Journal of Inorganic Chemistry, ;2019, 35(12): 2260-2268. doi: 10.11862/CJIC.2019.254 shu

Synthesis and Gelation Ability of Spin-Crossover Iron(Ⅱ) Alkyl Imidazole Complexes

Figures(7)

  • Complexes 1~5 were synthesized by one-step reaction of 1-heptyl-1H-imidazole-2-carboxaldehyde(L1), 1-tetradecyl-1H-imidazole-2-carbaldehyde(L2), 1-hexadecyl-1H-imidazole-2-carbaldehyde(L3), 1-octadecyl-1H-imidazole-2-carboxaldehyde(L4), 1-eicosyl-1H-imidazole-2-carboxaldehyde(L5) with ferrous tetrafluoroborate and 1-phenylethylamine, respectively. The five complexes have been determined by IR spectra and elemental analysis. X-ray crystallography reveals that each unit in 1 contains one[Fe(L1)3]2+ cation and two BF4- anions. The iron(Ⅱ) center coordinates with six N donor atoms from three ligands to form a octahedral mononuclear compound with fac-configuration. The Fe(Ⅱ)-N bond distances indicate that the Fe(Ⅱ) sites of 1 are in low-spin state. As for[Fe(L1)3]2+, intramolecular π-π interactions are present between phenyl group and imidazole ring of an adjacent ligand, and then a supramolecular architectures are further formed by C-H…π interactions between alkyl chain and aromatic ring. Magnetic measurements reveal that 1 displays incomplete spin-crossover behaviour at 341 K, and 2 is a high-spin paramagnetic compound, while 3~5 show incomplete spin-crossover behaviour. The corresponding metallogels MOG2~MOG5 were formed by using complexes 2~5 with longer alkyl chains as gelator and cyclohexane as solvent. Scanning electron microscopy(SEM) images showed that the MOG2~MOG5 had 3D network pore structure. Reversible gel-sol transitions were found in MOG2~MOG5. Under the influence of heat and mechanical force, MOG2~MOG5 were rapidly converted to sol, which can be restored to gel after being stationary, showing good stimulation-response and self-healing ability.
  • 加载中
    1. [1]

      (a) Draper E R, Adams D. Chem, 2017, 3: 390-410
      (b)Gronwald O, Snip E, Shinkai S. Curr. Opin. Colloid Interface Sci., 2002, 7: 148-156

    2. [2]

      (a) Cheng N, Kang Q, Xiao J, et al. J. Colloid and Interface Sci., 2018, 511: 215-221
      (b)Piepenbrock M M, Lloyd G O, Clarke N, et al. Chem. Rev., 2010, 110: 1960-2004

    3. [3]

    4. [4]

    5. [5]

      (a) Rahim M A, Hata Y, Bjornmalm M, et al. Small, 2018, 14: 1801202
      (b)Rambabu D, Negi Priyanka, Dhir A, et al. Inorg. Chem. Commun., 2018, 93: 6-9

    6. [6]

    7. [7]

      (a) Halcrow M A. Chem. Soc. Rev., 2011, 40: 4119-4142
      (b)Bousseksou A, Molnar G, Salmon L, et al. Chem. Soc. Rev., 2011, 40: 3313-3335
      (c)Cook L J K, Mohammed R, Sherborne G, et al. Coord. Chem. Rev., 2015, 289: 2-12
      (d)Guionneau P. Dalton Trans., 2014, 43: 382-393
      (e)Rosner B, Milek M, Witt A, et al. Angew. Chem. Int. Ed., 2015, 54: 12976-12980

    8. [8]

    9. [9]

      (a) Li H, Peng H N. Curr. Opin. Colloid Interface Sci., 2019, 35: 9-16
      (b)Gaspar A B, Seredyuk M. Coord. Chem. Rev., 2014, 268: 41-58

    10. [10]

      (a) Grondin P, Roubeau O, Castro M, et al. Langmuir, 2010, 26: 5184-5195
      (b)Roubeau O, Colin A, Schmitt V, et al. Angew. Chem. Int. Ed., 2004, 43: 3283-3286
      (c)Tsuyohiko F, Jiang D L, Aida T. Chem. Asian J., 2007, 2: 106-113

    11. [11]

      SAINT-Plus, Ver. 6.02, Bruker Analytical X-ray System, Madison, WI, 1999.

    12. [12]

      Sheldrick G M. SADABS, An Empirical Absorption Correction Program, Bruker Analytical X-ray Systems, Madison, WI, 1996.

    13. [13]

      Sheldrick G M. SHELXTL-97, Universitity of Göttingen, Germany, 1997.

    14. [14]

      (a) Nishida Y, Kino K, Kida S. Dalton Trans., 1987, 5: 1157-1161
      (b)König E P. Inorg. Chem., 1987, 35: 527-623

    15. [15]

      (a) Niel V, Martinez-Agudo J M, Munoz M C, et al. Inorg. Chem., 2001, 40: 3838-3839
      (b)Nishi K, Matsumoto N, Iijima S. Inorg. Chem., 2011, 50: 11303-11305

    16. [16]

      (a) Matouzenko G S, Jeanneau E, Verat A Y, et al. Dalton Trans., 2011, 40: 9608-9618
      (b)Zhang W, Zhao F, Liu T, et al. Inorg. Chem., 2007, 46: 2541-2555

    17. [17]

    18. [18]

      ZHENG Xue-Jing, LIU Fang-Bei, PEI Ying, et al. Polymer Bulletin, 2017, 5:1-10
       

    19. [19]

      Adrus N, Ulbrcht M. React. Funct. Polym., 2013, 73:141-148  doi: 10.1016/j.reactfunctpolym.2012.08.015

    20. [20]

      Miao W, Yang D, Liu M. Chem. Eur. J., 2015, 21:7562-7570  doi: 10.1002/chem.201500097

  • 加载中
    1. [1]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    2. [2]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    3. [3]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    4. [4]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    5. [5]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    6. [6]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    7. [7]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    8. [8]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    9. [9]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    10. [10]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    11. [11]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    12. [12]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    13. [13]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    14. [14]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    15. [15]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    16. [16]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    17. [17]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    18. [18]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    19. [19]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    20. [20]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

Metrics
  • PDF Downloads(3)
  • Abstract views(697)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return