Citation: SU Hui, XU Hao, ZHANG Li-Chuang, XU Shuang-Meng, WEI Yan, DU Jing-Jing, HUANG Di. Advances in Cell Surface Shellization[J]. Chinese Journal of Inorganic Chemistry, ;2019, 35(10): 1713-1727. doi: 10.11862/CJIC.2019.211 shu

Advances in Cell Surface Shellization

  • Corresponding author: WEI Yan, weiyan@tyut.edu.cn
  • Received Date: 2 April 2019
    Revised Date: 29 July 2019

Figures(10)

  • The cell surface shellization is a kind of technology that mainly modifying cell surface to form a complete and uniform organic, inorganic, metal nanoparticles or composite shell structure with physical, chemical and other technical methods. So the cells, which cannot be shellized themselves, can form a protective shell outside and even gain new features, leading to form a multi-functional cell. In recent years, this technology has been widely used in cell storage, cell transportation, cell sensors, cell chips, and cell therapy, and has developed rapidly. This paper synthesizes the current research, and introduces in detail the cell types that can be used for cell surface shellization, the methods of bio-surface shellization, and the application of engineering techniques of artificial cell shells in biomedical and energy environments.
  • 加载中
    1. [1]

      Weiner S, Dove P M. Rev. Mineral. Geochem., 2003, 54(1):1-29
       

    2. [2]

      Romano P. Acta Biomater., 2007, 3(3):301-309  doi: 10.1016/j.actbio.2006.10.003

    3. [3]

      Hamm C E, Merkel R, Springer O, et al. Nature, 2003, 421:841-843  doi: 10.1038/nature01416

    4. [4]

      Wang B, Liu P, Tang R K. Bioessays, 2010, 32(8):698-708  doi: 10.1002/bies.200900120

    5. [5]

      Diaspro A, Silvano D, Krol S, et al. Langmuir, 2002, 18(13):5047-5050  doi: 10.1021/la025646e

    6. [6]

      Krol S, Cavalleri O, Ramoino P, et al. J. Microsc.-Oxford, 2010, 212(3):239-243
       

    7. [7]

      Drachuk I, Shchepelina O, Lisunova M, et al. ACS Nano, 2012, 6(5):4266-4278  doi: 10.1021/nn3008355

    8. [8]

      Wang B, Liu P, Jiang W, et al. Angew. Chem. Int. Ed., 2010, 47(19):3560-3564

    9. [9]

      Anselmo A C, Mchugh K J, Webster J, et al. Adv. Mater., 2016, 28(43):9486-9490  doi: 10.1002/adma.201603270

    10. [10]

      Falco C Y, Sotres J, Rascón A, et al. J. Colloid Interface Sci., 2017, 487:97-106  doi: 10.1016/j.jcis.2016.10.019

    11. [11]

      Li Z, Chung S W, Nam J M, et al. Angew. Chem., 2003, 115(20):2408-2411  doi: 10.1002/ange.200351231

    12. [12]

      Johnson P E, Muttil P, Mackenzie D, et al. ACS Nano, 2015, 9(7):6961-6977  doi: 10.1021/acsnano.5b01139

    13. [13]

      Nam K T, Kim D W, Yoo P J, et al. Science, 2006, 312(5775):885-888  doi: 10.1126/science.1122716

    14. [14]

      Mansouri S, Merhi Y, Winnik F M, et al. Biomacromolecules, 2011, 12(3):585-592  doi: 10.1021/bm101200c

    15. [15]

      Ai H, Fang M, Jones S A, et al. Biomacromolecules, 2002, 3(3):560-564  doi: 10.1021/bm015659r

    16. [16]

      Lim F, Sun A M. Science, 1980, 210(4472):908-910  doi: 10.1126/science.6776628

    17. [17]

      Magyar J P, Nemir M, Ehler E, et al. Ann. N.Y. Acad. Sci., 2010, 944(1):135-143
       

    18. [18]

    19. [19]

      Zhao Q H, Li H, Li B. J. Mater. Res., 2011, 26(2):347-351  doi: 10.1557/jmr.2010.23

    20. [20]

      Stephan M T, Moon J J, Um S H, et al. Nat. Med., 2010, 16(9):1035-1041  doi: 10.1038/nm.2198

    21. [21]

      De Geest B G, De Koker S. Layer-by-Layer Films for Biomedical Applications. Picart C, Caruso F, Voegel J-C. Ed. Weinheim:Wiley-VCH Verlag GmbH&Co. KGaA, 2015:233-256

    22. [22]

      KUANG Jie, PENG Cheng-Hong, HAN Bao-San, et al. Journal of Surgery Concepts&Practice, 2010, 15(5):531-535
       

    23. [23]

      Hui T Y, Cheung K M C, Cheung W L, et al. Biomaterials, 2008, 29(22):3201-3212  doi: 10.1016/j.biomaterials.2008.04.001

    24. [24]

      Etter J N, Karasinski M, Ware J, et al. J. Mater. Sci.-Mater. Med., 2018, 29(9):143  doi: 10.1007/s10856-018-6151-4

    25. [25]

      SONG Yang, CAO Zhen-Qiang, ZHANG Dan, et al. Chinese Journal of Stereology and Image Analysis, 2017(1):56-60
       

    26. [26]

      Wei Y, Yin G, Ma C, et al. Med. Hypotheses, 2013, 81(2):169-171  doi: 10.1016/j.mehy.2013.05.014

    27. [27]

      Neu B, Voigt A, Mitlöhner R, et al. J. Microencapsulation, 2001, 18(3):385-395  doi: 10.1080/02652040010000398

    28. [28]

      Hillberg A L, Tabrizian M. Biomacromolecules, 2006, 7(10):2742-2750  doi: 10.1021/bm060266j

    29. [29]

      Veerabadran N G, Goli P L, Stewart-Clark S S, et al. Macromol. Biosci., 2010, 7(7):877-882
       

    30. [30]

      Gevaert E, Billiet T, Declercq H, et al. Macromol. Biosci., 2014, 14(3):419-427  doi: 10.1002/mabi.201300320

    31. [31]

      Matsusaki M, Kadowaki K, Nakahara Y, et al. Angew. Chem. Int. Ed., 2010, 46(25):4689-4692
       

    32. [32]

      Dzamukova M R, Zamaleeva A I, Ishmuchametova D G, et al. Langmuir, 2011, 27(23):14386-14393  doi: 10.1021/la203839v

    33. [33]

      Ko E H, Yoon Y, Park J H, et al. Angew. Chem. Int. Ed., 2013, 52(47):12279-12282  doi: 10.1002/anie.201305081

    34. [34]

      Li W Y, Guan T, Zhang X, et al. ACS Appl. Mater. Interfaces, 2015, 7(5):3018-3029  doi: 10.1021/am504456t

    35. [35]

      Lin B, Wang J, Miao Y, et al. J. Mater. Chem. B, 2016, 4(3):489-504  doi: 10.1039/C5TB02265G

    36. [36]

      Stephan M T, Moon J J, Um S H, et al. Nat. Med., 2010, 16(9):1035-1041  doi: 10.1038/nm.2198

    37. [37]

      Le Y, Chen J F, Wang W C. Appl. Surf. Sci., 2004, 230(1):319-326
       

    38. [38]

      Ren N, Wang B, Yang Y, et al. Chem. Mater., 2005, 17(10):2582-2587  doi: 10.1021/cm0502828

    39. [39]

    40. [40]

    41. [41]

      XIONG Ying, FU Ying-Li, YU Wei-Ting, et al. Chinese Journal of Organ Transplantation, 2003, 24(2):86-88  doi: 10.3760/cma.j.issn.0254-1785.2003.02.009

    42. [42]

      Carter J L, Drachuk I, Harbaugh S, et al. Macromol. Biosci., 2011, 11(9):1244-1253  doi: 10.1002/mabi.201100129

    43. [43]

      Kozlovskaya V, Harbaugh S, Drachuk I, et al. Soft Matter, 2011, 7(6):2364-2372  doi: 10.1039/C0SM01070G

    44. [44]

      Yang S H, Kang S M, Lee K B, et al. J. Am. Chem. Soc., 2011, 133(9):2795-2797  doi: 10.1021/ja1100189

    45. [45]

      Chevallay B, Herbage D. Med. Biol. Eng. Comput., 2000, 38(2):211-218  doi: 10.1007/BF02344779

    46. [46]

      Jen A C, Wake M C, Mikos A G. Biotechnol. Bioeng., 2015, 50(4):357-364
       

    47. [47]

      Magyar J P, Nemir M, Ehler E, et al. Ann. N. Y. Acad. Sci., 2010, 944(1):135-143
       

    48. [48]

      Otterlei M, Ostgaard K, Skjk-Brk G, et al. J. Immunother., 1991, 10(4):286-291  doi: 10.1097/00002371-199108000-00007

    49. [49]

      SHANG Qing-Qing, ZHOU Jian-Ye, LI Kai, et al. Chinese Journal of Tissue Engineering Research, 2018, 22(5):675-679
       

    50. [50]

    51. [51]

      DING Lin, HAO Chen, XUE Ya-Dong, et al. Journal of Nanchang University:Natural Science, 2006, 30(Suppl):1101-1102

    52. [52]

      Baca H K, Ashley C, Carnes E, et al. Science, 2006, 313(5785):337-341  doi: 10.1126/science.1126590

    53. [53]

      Dickson D J, Ely R L. Appl. Microbiol. Biotechnol., 2013, 97(5):1809-1819  doi: 10.1007/s00253-012-4686-8

    54. [54]

      Meunier C F, Rooke J C, Léonard A, et al. J. Mater. Chem., 2010, 20(5):929-936  doi: 10.1039/B919763J

    55. [55]

      Arias J L, Neira-Carrillo A, Arias J I, et al. J. Mater. Chem., 2004, 14(14):2154-2160  doi: 10.1039/B401396D

    56. [56]

      Takahashi K, Tanabe K, Ohnuki M, et al. Cell, 2007, 131(5):861-872  doi: 10.1016/j.cell.2007.11.019

    57. [57]

      Müller W E G, Engel S, Wang X, et al. Biomaterials, 2008, 29(7):771-779  doi: 10.1016/j.biomaterials.2007.10.038

    58. [58]

    59. [59]

    60. [60]

      Fakhrullin R F, Lvov Y M. ACS Nano, 2012, 6(6):4557-4564  doi: 10.1021/nn301776y

    61. [61]

      Bhatia S R, Khattak S F, Roberts S C. Curr. Opin. Colloid Interface Sci., 2005, 10(1):45-51

    62. [62]

      Mann S, Archibald D D, Didymus J M, et al. Science, 1993, 261(5126):1286-1292  doi: 10.1126/science.261.5126.1286

    63. [63]

      Mann S. Nature, 1988, 332(6160):119-124  doi: 10.1038/332119a0

    64. [64]

      Addadi L, Weiner S. Proc. Natl. Acad. Sci. U.S.A., 1985, 82(12):4110-4114  doi: 10.1073/pnas.82.12.4110

    65. [65]

      Addadi L, Moradian J, Shay E, et al. Proc. Natl. Acad. Sci. U.S.A., 1987, 84(9):2732-2736  doi: 10.1073/pnas.84.9.2732

    66. [66]

      Wu D, Yang J J, Li J Y, et al. Biomaterials, 2017, 133:253-262  doi: 10.1016/j.biomaterials.2017.04.020

    67. [67]

      YANG Yu-Ling, WANG Guang-Chuan, TANG Rui-Kang. Scientia Sinica Chimica, 2014, 44(4):601-610
       

    68. [68]

      Fakhrullin R F, Minullina R T. Langmuir, 2009, 25(12):6617-6621  doi: 10.1021/la901395z

    69. [69]

      Huang M J, Wang Y J. J. Mater. Chem., 2011, 22(2):626-630
       

    70. [70]

      Löbbicke R, Chanana M, Schlaad H, et al. Biomacromole-cules, 2011, 12(10):3753-3760

    71. [71]

      Qi C, Lin J, Fu L H, et al. Chem. Soc. Rev., 2018, 47(2):357-403  doi: 10.1039/C6CS00746E

    72. [72]

      Wang G C, Wang L J, Liu P, et al. ChemBioChem, 2010, 11(17):2368-2373  doi: 10.1002/cbic.201000494

    73. [73]

      Lee J, Choi J, Park J H, et al. Angew. Chem., 2014, 53(31):8056-8059  doi: 10.1002/anie.201402280

    74. [74]

      Yang S H, Lee K B, Kong B, et al. Angew. Chem., 2010, 48(48):9160-9163
       

    75. [75]

      Bai L, Du Z B, Du J J, et al. Biomaterials, 2018, 162(4):154-169
       

    76. [76]

      Lin Q X, Huang D, Du J J, et al. Appl. Surf. Sci., 2019, 478(6):237-246

    77. [77]

      Bai L, Liu Y L, Du Z B, et al. Acta Biomater., 2018, 76(8):344-358

    78. [78]

      Huang D, Yin M, Lin Q X, et al. RSC Adv., 2017, 7(68):43040-43046  doi: 10.1039/C7RA07182E

    79. [79]

      Huang D, Niu L L, Wei Y, et al. J. R. Soc. Interface, 2014, 11(99):20140101  doi: 10.1098/rsif.2014.0101

    80. [80]

      Huang D, Xi S H, Zuo Y, et al. Mater. Lett., 2014, 133(10):105-108
       

    81. [81]

      Huang D, Zuo Y, Li J D, et al. J. R. Soc. Interface, 2012, 9(72):1450-1457  doi: 10.1098/rsif.2011.0782

    82. [82]

      Elhadj S, Salter E A, Wierzbicki A, et al. Cryst. Growth Des., 2006, 6(1):197-201  doi: 10.1021/cg050288+

    83. [83]

      Toworfe G K, Composto R J, Shapiro I M, et al. Biomaterials, 2006, 27(4):631-642  doi: 10.1016/j.biomaterials.2005.06.017

    84. [84]

      Nonoyama T, Kinoshita T, Higuchi M, et al. Langmuir, 2011, 27(11):7077-7083  doi: 10.1021/la2006953

    85. [85]

      Tarasevich B J, Chusuei C C, Allara D L. J. Phys. Chem. B, 2003, 107(38):10367-10377  doi: 10.1021/jp027445p

    86. [86]

      Chu X B, Jiang W, Zhang Z, et al. J. Phys. Chem. B, 2010, 115(5):1151-1157
       

    87. [87]

      Kröger N, Lorenz S, Brunner E, et al. Science, 2002, 298(5593):584-586  doi: 10.1126/science.1076221

    88. [88]

      Kröger N, Deutzmann R, Sumper M. Science, 1999, 286(5442):1129-1132  doi: 10.1126/science.286.5442.1129

    89. [89]

      Sumper M, Lorenz S, Brunner E. Angew. Chem. Int. Ed., 2003, 42(42):5192-5195  doi: 10.1002/anie.200352212

    90. [90]

      Pohnert G. Angew. Chem. Int. Ed., 2002, 41(17):3167-3169  doi: 10.1002/1521-3773(20020902)41:17<3167::AID-ANIE3167>3.0.CO;2-R

    91. [91]

      Kröger N, Deutzmann R, Bergsdorf C, et al. Proc. Natl. Acad. Sci. U.S.A., 2000, 97(26):14133-14138  doi: 10.1073/pnas.260496497

    92. [92]

      XIONG Wei, TANG Rui-Kang, MA Wei-Min, et al. Chinese J. Inorg. Chem., 2019, 35(1):1-24
       

    93. [93]

      Zamaleeva A I, Sharipova I R, Porfireva A V, et al. Langmuir, 2009, 26(4):2671-2679
       

    94. [94]

      Xiong W, Yang Z, Zhai H L, et al. Chem. Commun., 2013, 49(68):7525-7527  doi: 10.1039/c3cc42766h

    95. [95]

      Wei Y, Yin G F, Ma C Y, et al. J. Colloid. Surface. B, 2013, 107:180-188  doi: 10.1016/j.colsurfb.2013.01.058

    96. [96]

      Voet A R D, Tame J R H. Curr. Opin. Biotechnol., 2017, 46:14-19  doi: 10.1016/j.copbio.2016.10.015

    97. [97]

      Reynolds R A, Mirkin C A, Letsinger R L. J. Am. Chem. Soc., 2000, 122(15):3795-3796  doi: 10.1021/ja000133k

    98. [98]

      Marambiojones C, Hoek E M V. J. Nano Res., 2010, 12(5):1531-1551  doi: 10.1007/s11051-010-9900-y

    99. [99]

      Miyaura N, Yanagi T, Suzuki A. Synth. Commun., 1981, 11(7):513-519  doi: 10.1080/00397918108063618

    100. [100]

      YAO Cheng-Li, JIN Tao, TIAN Ning-Ning. Jiangsu Agricultural Sciences, 2015, 43(4):44-46
       

    101. [101]

      Fakhrullin R F, Zamaleeva A I, Morozov M V, et al. Langmuir, 2009, 25(8):4628-4634  doi: 10.1021/la803871z

    102. [102]

    103. [103]

      Bora U, Kannan K, Nahar P. J. Membr. Sci., 2005, 250(1):215-222
       

    104. [104]

      Mak W C, Sum K W, Trau D, et al. IEE Proc.:Nanobiote-chnol., 2004, 151(2):67-72  doi: 10.1049/ip-nbt:20040535

    105. [105]

      Yang S H, Ko E H, Choi I S. Langmuir, 2011, 28(4):2151-2155
       

    106. [106]

      Drachuk I, Shchepelina O, Harbaugh S, et al. Small, 2013, 9(18):3128-3137  doi: 10.1002/smll.201202992

    107. [107]

      Matsuzawa A, Matsusaki M, Akashi M. Langmuir, 2012, 29(24):7362-7368
       

    108. [108]

      Dandoy P, Meunier C F, Michiels C, et al. PloS One, 2011, 6(6):e20983  doi: 10.1371/journal.pone.0020983

    109. [109]

      Ruiz-Hitzky E, Aranda P, Darder M, et al. Chem. Soc. Rev., 2011, 40(2):801-828  doi: 10.1039/C0CS00052C

    110. [110]

      Xu X R, Wang B, Tang R K. ChemSusChem, 2011, 4(10):1439-1446  doi: 10.1002/cssc.201100043

    111. [111]

      Park J H, Yang S H, Lee J, et al. Adv. Mater., 2014, 26(13):2001-2010  doi: 10.1002/adma.201304568

    112. [112]

      Park J H, Kim K, Lee J, et al. Angew. Chem. Int. Ed., 2014, 53(46):12420-12425
       

    113. [113]

      Jiang N, Ying G L, Yetisen A K, et al. Chem. Sci., 2018, 9(21):4730-4735  doi: 10.1039/C8SC01130C

    114. [114]

    115. [115]

      HUANG Lei, ZHAI Jian-Ping, NIE Rong, et al. Research of Environmental Sciences, 2005, 18(3):33-38  doi: 10.3321/j.issn:1001-6929.2005.03.008

    116. [116]

      Alsaraj M, Abdellatif M S, Elnahal I, et al. J. Non-Cryst. Solids, 1999, 248(2/3):137-140
       

    117. [117]

      Marseaut S, Debourg A, Dostalek P, et al. Int. Biodeterior. Biodegrad., 2004, 54(2):209-214
       

    118. [118]

      Soltmann U, Matys S, Kieszig G, et al. J. Water Resour. Prot., 2010, 2(2):115-122  doi: 10.4236/jwarp.2010.22013

    119. [119]

    120. [120]

      Ma X M, Chen H F, Yang L, et al. Angew. Chem. Int. Ed., 2011, 123(32):7552-7555  doi: 10.1002/ange.201100126

    121. [121]

    122. [122]

    123. [123]

      BI Lei, PAN Gang. Chin. Sci. Bull., 2014, 59(25):2440-2451
       

    124. [124]

      XIA Yang, FANG Ru-Yi, SHI Si, et al. Materials Review, 2016, 30(1):128-135
       

    125. [125]

      Du X Y, He W, Zhang X D, et al. J. Mater. Chem., 2012, 22(13):5960-5969  doi: 10.1039/c1jm14758g

    126. [126]

      Yin Y Y, Li R Y, Li Z J, et al. Electrochim. Acta, 2014, 125(12):330-337
       

    127. [127]

    128. [128]

      Wijffels R H, Barbosa M J. Science, 2010, 329(5993):796-799  doi: 10.1126/science.1189003

    129. [129]

      Zhao R B, Liu X Y, Yang X Y, et al. Adv. Mater., 2018, 30(27):1801304  doi: 10.1002/adma.201801304

    130. [130]

      Wang B, Liu P, Tang Y Y, et al. PloS One, 2010, 5(4):e9963  doi: 10.1371/journal.pone.0009963

    131. [131]

      Wang G C, Cao R Y, Chen R, et al. Proc. Natl. Acad. Sci. U.S.A., 2013, 110(19):7619-7624  doi: 10.1073/pnas.1300233110

    132. [132]

      Gonzalez-Mcquire R, Green D W, Partridge K A, et al. Adv. Mater., 2010, 19(17):2236-2240
       

    133. [133]

      Meinel L, Karageorgiou V, Fajardo R, et al. Ann. Biomed. Eng., 2004, 32(1):112-122  doi: 10.1023/B:ABME.0000007796.48329.b4

    134. [134]

      Jiang N, Ying G L, Liu S Y, et al. Chem. Commun., 2014, 50(97):15407-15410  doi: 10.1039/C4CC06323F

    135. [135]

      Zhao R B, Wang B, Yang X Y, et al. Angew. Chem. Int. Ed., 2016, 55(17):5225-5229  doi: 10.1002/anie.201601364

    136. [136]

      Zhu L, Wang G, Shi W K, et al. J. Colloid Interface Sci., 2019, 541:339-347  doi: 10.1016/j.jcis.2019.01.090

    137. [137]

      Wang L, Hu Z Y, Yang X Y, et al. Chem. Commun., 2017, 53(49):6617-6620  doi: 10.1039/C7CC01283G

    138. [138]

      Zhou X, Xia S J, Lu Z Q, et al. J. Am. Chem. Soc., 2010, 132(20):6932-6934  doi: 10.1021/ja102271r

    139. [139]

      Su L, Jia W Z, Hou C J, et al. Biosens. Bioelectron., 2011, 26(5):1788-1799  doi: 10.1016/j.bios.2010.09.005

    140. [140]

      Zamaleeva A I, Sharipova I R, Shamagsumova R V, et al. Anal. Methods, 2011, 3(3):509-513  doi: 10.1039/c0ay00627k

    141. [141]

      WANG Hui, WANG Tian, YE Yan-Xia, et al. Chin. J. Anal. Chem., 2012, 40(2):184-190
       

    142. [142]

      HU Jin-Fu, XU Ming-En, XU Ying, et al. Chinese Journal of Biomedical Engineering, 2012, 31(3):374-381  doi: 10.3969/j.issn.0258-8021.2012.03.010

    143. [143]

      ZHANG Li, ZHANG Hui-Jing, GUAN Xiao, et al. Journal of Third Military Medical University, 2011, 33(24):2575-2578
       

    144. [144]

      Fakhrullin R, Choi I S, Lvov Y. Cell Surface Engineering: Fabrication of Functional Nanoshells. UK: The Royal Society of Chemistry. 2014.

  • 加载中
    1. [1]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    2. [2]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    3. [3]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    4. [4]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    5. [5]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    6. [6]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    7. [7]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    8. [8]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    9. [9]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    10. [10]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    11. [11]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    12. [12]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    13. [13]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    14. [14]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    15. [15]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    16. [16]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    17. [17]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    18. [18]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    19. [19]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    20. [20]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

Metrics
  • PDF Downloads(10)
  • Abstract views(564)
  • HTML views(192)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return