Citation: GAO Duan, CHENG Li-Hong, CHEN Bao-Jiu, LIU Sheng-Yi, LI Xiang-Ping, SUN Jia-Shi, XU Sai, ZHANG Jin-Su. Effect of Microwave-Assisted Hydrothermal Reaction Parameters on Phase, Morphology and Luminescence Properties of NaYF4: Dy3+ Phosphors[J]. Chinese Journal of Inorganic Chemistry, ;2019, 35(9): 1623-1634. doi: 10.11862/CJIC.2019.203 shu

Effect of Microwave-Assisted Hydrothermal Reaction Parameters on Phase, Morphology and Luminescence Properties of NaYF4: Dy3+ Phosphors

  • Corresponding author: CHENG Li-Hong, cheng-lihong@126.com
  • Received Date: 30 April 2019
    Revised Date: 8 June 2019

Figures(16)

  • The disadvantage of the traditional hydrothermal method was the poor repeatability. Therefore, the conclusions of the influence of various parameters on the morphology of rare earth doped NaYF4 prepared by the traditional hydrothermal method reported by different research groups in the literature were different. In order to clarify the effects of hydrothermal parameters on the structure and morphology of rare earth doped NaYF4, Dy3+ doped NaYF4 phosphors were prepared by microwave hydrothermal method with good reproducibility and controllability. The effects of various parameters on the structure, morphology and luminescence of the products were systematically studied. The reproducible NaYF4:Dy3+ samples were rapidly prepared by microwave-assisted hydrothermal method. The effects of reaction parameters on the crystal phase, morphology and luminescence properties of NaYF4:Dy3+ phosphors were investigated. The results show that the microwave hydrothermal reaction time don't affect the crystal phase, morphology and spectral properties of the as-prepared phosphors. The increase of Dy3+ concentration do not change the crystal phase and morphology of the samples, but the luminescence intensity changes. The trends of luminescence intensity first increased and then decreased. The maximum luminescence intensity was obtained when the Dy3+ concentration was 1%(n/n). The electric multipole interaction index obtained according to the specific theoretical basis was 6. It is shown that the interaction between Dy3+ is dipole-dipole interaction. The effects of the type and amounts of surfactant on the NaYF4:Dy3+ crystal phase were investigated. It was observed when Na3Cit·2H2O and CTAB were used as surfactants, hexagonal phase NaYF4:Dy3+ phosphors were prepared. The amounts of Na3Cit·2H2O and CTAB were increased and the crystal phase of the sample was not changed. When EDTA-2Na was used as the surfactant, the transition from the hexagonal phase to the cubic phase crystal phase occurred as the amounts of the EDTA-2Na increased. As the amounts of surfactants continue to increase, the size of the sample decreased. Under the excitation of 350 nm, Dy3+ emission peaks appeared. The blue light emission peak centered at 479 nm, which corresponds to the 4F9/26H15/2 transition of Dy3+. The green light emission peak centered at 572 nm, which corresponds to the 4F9/26H13/2 transition of Dy3+.
  • 加载中
    1. [1]

      Oliva J, Meza O, Diaz-Torres L A, et al. J. Opt. Soc. Am. B, 2011, 28:649-656  doi: 10.1364/JOSAB.28.000649

    2. [2]

      Hsu C H, Lu C H. J. Mater. Chem., 2011, 21:2932-2939  doi: 10.1039/c0jm02501a

    3. [3]

      Wawrzynczyk D, Piatkowski D, Mackowski S, et al. J. Mater. Chem. C, 2015, 3:5332-5338  doi: 10.1039/C5TC00468C

    4. [4]

      Lin Y H, Das S, Yang C Y, et al. J. Alloys Compd., 2015, 632:354-360  doi: 10.1016/j.jallcom.2015.01.254

    5. [5]

      Cheng C H, Wu Y N, Xiong Z X. Key Eng. Mater., 2008, 368:394-397

    6. [6]

      Sun Y J, Chen Y, Tian L J, et al. Nanotechnology, 2007, 18:27-36  doi: 10.1088/0957-4484/18/27/275609

    7. [7]

      Kappe C O, Dallinger D, Murphree S S. Angew. Chem., 2009, 121:2866-2867  doi: 10.1002/ange.200900791

    8. [8]

      HU Rong-Xuan, WANG Hui-Yun, ZHENG Tong, et al. Chinese Journal of Luminescence, 2015, 36:20-26  doi: 10.3788/fgxb20153601.0020

    9. [9]

      Qian Y, Wang R, Zhang B, et al. Opt. Lett., 2013, 38:3731-3734  doi: 10.1364/OL.38.003731

    10. [10]

      Klier D T, Kumke M U. J. Phys. Chem. C, 2015, 39:3363-3373  doi: 10.1021/jp5103548

    11. [11]

      Tian Y, Chen B J, Hua R N, et al. CrystEngComm, 2012, 14:1765-1769  doi: 10.1039/c2ce26101d

    12. [12]

    13. [13]

      Zheng H, Chen B J, Yu H Q, et al. RSC Adv., 2015, 5:56337-56347  doi: 10.1039/C5RA06915G

    14. [14]

      Boyer J C, Vetrone F, Cuccia L A. J. Am. Chem. Soc., 2006, 128:7444-7445  doi: 10.1021/ja061848b

    15. [15]

      Mai H X, Zhang Y W, Yan C H. J. Phys. Chem. C, 2007, 111:13721-13729  doi: 10.1021/jp073920d

    16. [16]

      Lin C K, Berry M T, May P S. Chem. Mater., 2009, 21:3406-3413  doi: 10.1021/cm901094m

    17. [17]

      Qian H S, Zhang Y. Langmuir, 2008, 24:12123-12125  doi: 10.1021/la802343f

    18. [18]

      ZHANG Qing-Bing, CHENG Cheng. Chinese J. Inorg. Chem., 2015, 31(1):81-86
       

    19. [19]

      MAO Lan-Lan, ZHANG Li-Ming, DENG Yang, et al. Chinese J. Inorg. Chem., 2016, 32(12):2095-2101
       

    20. [20]

      WANG Ya-Jing, ZHANG Zheng, XIAO Lin-Jiu, et al. Chinese Journal of Luminescence, 2012, 33:258-262

    21. [21]

      Sedlmeier A, Gorris H H. Chem. Soc. Rev., 2015, 44:1526-1560  doi: 10.1039/C4CS00186A

    22. [22]

      CHEN Zhi-Gang, KUANG Xing-Yu, SONG Lin-Lin, et al. Chinese J. Inorg. Chem., 2013, 29(8):1574-1590
       

    23. [23]

      Mandl G A, Cooper D R, Hirsch T, et al. Methods Appl. Fluores., 2019, 7:1-9

    24. [24]

      Cao C, Yang H K, Chung J W, et al. J. Am. Ceram. Soc., 2011, 94:3405-3411  doi: 10.1111/j.1551-2916.2011.04518.x

    25. [25]

      You F T, Zhang X G, Peng H S, et al. J. Rare Earths, 2013, 31:1125-1129  doi: 10.1016/S1002-0721(12)60415-3

    26. [26]

      Ma D K, Huang S M, Dong Y Q. J. Phys. Chem. C, 2009, 113:8136-8142  doi: 10.1021/jp901369n

    27. [27]

      LIN Jun, LI Chun-Xia. Chinese Journal of Luminescence, 2011, 32:519-534  doi: 10.3788/fgxb20113206.0519

    28. [28]

      Liang H B, Zeng Q, Su Q, et al. Spectrosc. Lett., 2007, 40:317-331  doi: 10.1080/00387010701247589

    29. [29]

      Liu C M, Zhou W J, Shi R, et al. J. Mater. Chem. C, 2017, 35:9012-9020  doi: 10.1039/C7TC03260A

    30. [30]

      Han B, Liang H B, Lin H H, et al. J. Opt. Soc. Am. B, 2008, 25:2057-2063  doi: 10.1364/JOSAB.25.002057

    31. [31]

      Zhuang J L, Yang X F, Fu J X, et al. Cryst. Growth Des., 2013, 13:2292-2297  doi: 10.1021/cg301751c

    32. [32]

      Liang X, Wang X, Zhuang J, et al. Adv. Funct. Mater., 2007, 17:2757-2765  doi: 10.1002/adfm.200600807

    33. [33]

      Van Uitert L Q. J. Electrochem. Soc., 1967, 114:1048-1053  doi: 10.1149/1.2424184

    34. [34]

      Yi G S, Lu H C, Zhao S Y, et al. Nano Lett., 2004, 4:2191-2198  doi: 10.1021/nl048680h

    35. [35]

      Qian H S, Guo H C, Ho P C, et al. Small, 2009, 5:2285-2290  doi: 10.1002/smll.200900692

    36. [36]

      Tian Y, Hua R N, Yu N S, et al. J. Alloys Compd., 2011, 509:9924-9929  doi: 10.1016/j.jallcom.2011.07.095

    37. [37]

      Zhang J H, Hao Z D, Li J, et al. Light:Sci. Appl., 2015, 4:1-6  doi: 10.1038/lsa.2015.12

    38. [38]

      Wang C, Cheng X. J. Alloys Compd., 2014, 617:807-815  doi: 10.1016/j.jallcom.2014.08.101

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    3. [3]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    4. [4]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    5. [5]

      Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391

    6. [6]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    7. [7]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    8. [8]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    9. [9]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    10. [10]

      Shunshun JiangJi ZhangJing WangShan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955

    11. [11]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    12. [12]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    15. [15]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    16. [16]

      Tao LongPeng ChenBin FengCaili YangKairong WangYulei WangCan ChenYaping WangRuotong LiMeng WuMinhuan LanWei Kong PangJian-Fang WuYuan-Li Ding . Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode. Chinese Chemical Letters, 2024, 35(4): 109267-. doi: 10.1016/j.cclet.2023.109267

    17. [17]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    18. [18]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    19. [19]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    20. [20]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

Metrics
  • PDF Downloads(3)
  • Abstract views(595)
  • HTML views(127)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return