Citation: GAO Duan, CHENG Li-Hong, CHEN Bao-Jiu, LIU Sheng-Yi, LI Xiang-Ping, SUN Jia-Shi, XU Sai, ZHANG Jin-Su. Effect of Microwave-Assisted Hydrothermal Reaction Parameters on Phase, Morphology and Luminescence Properties of NaYF4: Dy3+ Phosphors[J]. Chinese Journal of Inorganic Chemistry, ;2019, 35(9): 1623-1634. doi: 10.11862/CJIC.2019.203 shu

Effect of Microwave-Assisted Hydrothermal Reaction Parameters on Phase, Morphology and Luminescence Properties of NaYF4: Dy3+ Phosphors

  • Corresponding author: CHENG Li-Hong, cheng-lihong@126.com
  • Received Date: 30 April 2019
    Revised Date: 8 June 2019

Figures(16)

  • The disadvantage of the traditional hydrothermal method was the poor repeatability. Therefore, the conclusions of the influence of various parameters on the morphology of rare earth doped NaYF4 prepared by the traditional hydrothermal method reported by different research groups in the literature were different. In order to clarify the effects of hydrothermal parameters on the structure and morphology of rare earth doped NaYF4, Dy3+ doped NaYF4 phosphors were prepared by microwave hydrothermal method with good reproducibility and controllability. The effects of various parameters on the structure, morphology and luminescence of the products were systematically studied. The reproducible NaYF4:Dy3+ samples were rapidly prepared by microwave-assisted hydrothermal method. The effects of reaction parameters on the crystal phase, morphology and luminescence properties of NaYF4:Dy3+ phosphors were investigated. The results show that the microwave hydrothermal reaction time don't affect the crystal phase, morphology and spectral properties of the as-prepared phosphors. The increase of Dy3+ concentration do not change the crystal phase and morphology of the samples, but the luminescence intensity changes. The trends of luminescence intensity first increased and then decreased. The maximum luminescence intensity was obtained when the Dy3+ concentration was 1%(n/n). The electric multipole interaction index obtained according to the specific theoretical basis was 6. It is shown that the interaction between Dy3+ is dipole-dipole interaction. The effects of the type and amounts of surfactant on the NaYF4:Dy3+ crystal phase were investigated. It was observed when Na3Cit·2H2O and CTAB were used as surfactants, hexagonal phase NaYF4:Dy3+ phosphors were prepared. The amounts of Na3Cit·2H2O and CTAB were increased and the crystal phase of the sample was not changed. When EDTA-2Na was used as the surfactant, the transition from the hexagonal phase to the cubic phase crystal phase occurred as the amounts of the EDTA-2Na increased. As the amounts of surfactants continue to increase, the size of the sample decreased. Under the excitation of 350 nm, Dy3+ emission peaks appeared. The blue light emission peak centered at 479 nm, which corresponds to the 4F9/26H15/2 transition of Dy3+. The green light emission peak centered at 572 nm, which corresponds to the 4F9/26H13/2 transition of Dy3+.
  • 加载中
    1. [1]

      Oliva J, Meza O, Diaz-Torres L A, et al. J. Opt. Soc. Am. B, 2011, 28:649-656  doi: 10.1364/JOSAB.28.000649

    2. [2]

      Hsu C H, Lu C H. J. Mater. Chem., 2011, 21:2932-2939  doi: 10.1039/c0jm02501a

    3. [3]

      Wawrzynczyk D, Piatkowski D, Mackowski S, et al. J. Mater. Chem. C, 2015, 3:5332-5338  doi: 10.1039/C5TC00468C

    4. [4]

      Lin Y H, Das S, Yang C Y, et al. J. Alloys Compd., 2015, 632:354-360  doi: 10.1016/j.jallcom.2015.01.254

    5. [5]

      Cheng C H, Wu Y N, Xiong Z X. Key Eng. Mater., 2008, 368:394-397

    6. [6]

      Sun Y J, Chen Y, Tian L J, et al. Nanotechnology, 2007, 18:27-36  doi: 10.1088/0957-4484/18/27/275609

    7. [7]

      Kappe C O, Dallinger D, Murphree S S. Angew. Chem., 2009, 121:2866-2867  doi: 10.1002/ange.200900791

    8. [8]

      HU Rong-Xuan, WANG Hui-Yun, ZHENG Tong, et al. Chinese Journal of Luminescence, 2015, 36:20-26  doi: 10.3788/fgxb20153601.0020

    9. [9]

      Qian Y, Wang R, Zhang B, et al. Opt. Lett., 2013, 38:3731-3734  doi: 10.1364/OL.38.003731

    10. [10]

      Klier D T, Kumke M U. J. Phys. Chem. C, 2015, 39:3363-3373  doi: 10.1021/jp5103548

    11. [11]

      Tian Y, Chen B J, Hua R N, et al. CrystEngComm, 2012, 14:1765-1769  doi: 10.1039/c2ce26101d

    12. [12]

    13. [13]

      Zheng H, Chen B J, Yu H Q, et al. RSC Adv., 2015, 5:56337-56347  doi: 10.1039/C5RA06915G

    14. [14]

      Boyer J C, Vetrone F, Cuccia L A. J. Am. Chem. Soc., 2006, 128:7444-7445  doi: 10.1021/ja061848b

    15. [15]

      Mai H X, Zhang Y W, Yan C H. J. Phys. Chem. C, 2007, 111:13721-13729  doi: 10.1021/jp073920d

    16. [16]

      Lin C K, Berry M T, May P S. Chem. Mater., 2009, 21:3406-3413  doi: 10.1021/cm901094m

    17. [17]

      Qian H S, Zhang Y. Langmuir, 2008, 24:12123-12125  doi: 10.1021/la802343f

    18. [18]

      ZHANG Qing-Bing, CHENG Cheng. Chinese J. Inorg. Chem., 2015, 31(1):81-86
       

    19. [19]

      MAO Lan-Lan, ZHANG Li-Ming, DENG Yang, et al. Chinese J. Inorg. Chem., 2016, 32(12):2095-2101
       

    20. [20]

      WANG Ya-Jing, ZHANG Zheng, XIAO Lin-Jiu, et al. Chinese Journal of Luminescence, 2012, 33:258-262

    21. [21]

      Sedlmeier A, Gorris H H. Chem. Soc. Rev., 2015, 44:1526-1560  doi: 10.1039/C4CS00186A

    22. [22]

      CHEN Zhi-Gang, KUANG Xing-Yu, SONG Lin-Lin, et al. Chinese J. Inorg. Chem., 2013, 29(8):1574-1590
       

    23. [23]

      Mandl G A, Cooper D R, Hirsch T, et al. Methods Appl. Fluores., 2019, 7:1-9

    24. [24]

      Cao C, Yang H K, Chung J W, et al. J. Am. Ceram. Soc., 2011, 94:3405-3411  doi: 10.1111/j.1551-2916.2011.04518.x

    25. [25]

      You F T, Zhang X G, Peng H S, et al. J. Rare Earths, 2013, 31:1125-1129  doi: 10.1016/S1002-0721(12)60415-3

    26. [26]

      Ma D K, Huang S M, Dong Y Q. J. Phys. Chem. C, 2009, 113:8136-8142  doi: 10.1021/jp901369n

    27. [27]

      LIN Jun, LI Chun-Xia. Chinese Journal of Luminescence, 2011, 32:519-534  doi: 10.3788/fgxb20113206.0519

    28. [28]

      Liang H B, Zeng Q, Su Q, et al. Spectrosc. Lett., 2007, 40:317-331  doi: 10.1080/00387010701247589

    29. [29]

      Liu C M, Zhou W J, Shi R, et al. J. Mater. Chem. C, 2017, 35:9012-9020  doi: 10.1039/C7TC03260A

    30. [30]

      Han B, Liang H B, Lin H H, et al. J. Opt. Soc. Am. B, 2008, 25:2057-2063  doi: 10.1364/JOSAB.25.002057

    31. [31]

      Zhuang J L, Yang X F, Fu J X, et al. Cryst. Growth Des., 2013, 13:2292-2297  doi: 10.1021/cg301751c

    32. [32]

      Liang X, Wang X, Zhuang J, et al. Adv. Funct. Mater., 2007, 17:2757-2765  doi: 10.1002/adfm.200600807

    33. [33]

      Van Uitert L Q. J. Electrochem. Soc., 1967, 114:1048-1053  doi: 10.1149/1.2424184

    34. [34]

      Yi G S, Lu H C, Zhao S Y, et al. Nano Lett., 2004, 4:2191-2198  doi: 10.1021/nl048680h

    35. [35]

      Qian H S, Guo H C, Ho P C, et al. Small, 2009, 5:2285-2290  doi: 10.1002/smll.200900692

    36. [36]

      Tian Y, Hua R N, Yu N S, et al. J. Alloys Compd., 2011, 509:9924-9929  doi: 10.1016/j.jallcom.2011.07.095

    37. [37]

      Zhang J H, Hao Z D, Li J, et al. Light:Sci. Appl., 2015, 4:1-6  doi: 10.1038/lsa.2015.12

    38. [38]

      Wang C, Cheng X. J. Alloys Compd., 2014, 617:807-815  doi: 10.1016/j.jallcom.2014.08.101

  • 加载中
    1. [1]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    2. [2]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    3. [3]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    4. [4]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    5. [5]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    6. [6]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    7. [7]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    8. [8]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    9. [9]

      Ruofan YinZhaoxin GuoRui LiuXian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643

    10. [10]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    11. [11]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    12. [12]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    13. [13]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    14. [14]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    15. [15]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    16. [16]

      Sumiya Akter DristyMd Ahasan HabibShusen LinMehedi Hasan JoniRutuja MandavkarYoung-Uk ChungMd NajibullahJihoon Lee . Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting. Acta Physico-Chimica Sinica, 2025, 41(7): 100079-0. doi: 10.1016/j.actphy.2025.100079

    17. [17]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    18. [18]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    19. [19]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

    20. [20]

      Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391

Metrics
  • PDF Downloads(3)
  • Abstract views(985)
  • HTML views(254)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return