ElectrocatalyticHydrogen Evolution Performance of Ultra-Thin MoS2 Loaded Graphene Hybrids
- Corresponding author: ZHANG Bang-Wen, bangwenz@126.com
Citation:
GUO Shu-Wang, GAO Zhan-Yong, SONG Jin-Ling, BULIN Chao-Ke, ZHANG Bang-Wen. ElectrocatalyticHydrogen Evolution Performance of Ultra-Thin MoS2 Loaded Graphene Hybrids[J]. Chinese Journal of Inorganic Chemistry,
;2019, 35(7): 1195-1202.
doi:
10.11862/CJIC.2019.131
Nrskov J K, Bligaard T, Rossmeisl J, et al. Nat. Chem., 2009, 1(1):37-46
Hinnemann B, Moses P G, Bonde J, et al. J. Am. Chem. Soc., 2005, 127(15):5308-5309
doi: 10.1021/ja0504690
Lukowski M A, Daniel A S, MengF, et al. J. Am. Chem. Soc., 2013, 135(28):10274-10277
doi: 10.1021/ja404523s
Voiry D, Salehi M, Silva R, et al. Nano Lett., 2013, 13(12):6222-6227
doi: 10.1021/nl403661s
Lin J, Peng Z W, Wang G, et al. Adv. Energy Mater., 2014, 4(10):1301875
doi: 10.1002/aenm.201301875
Liu W L, Benson J, Dawson C, et al. Nanoscale, 2017, 9(36):13515-13526
doi: 10.1039/C7NR04790H
Faber M S, Dziedzic R, Lukowski M A, et al. J. Am. Chem. Soc., 2014, 136(28):10053-10061
doi: 10.1021/ja504099w
Kong D S, Wang H T, Lu Z L, et al. J. Am. Chem. Soc., 2014, 136(13):4897-4900
doi: 10.1021/ja501497n
Vrubel H, Merki D, Hu X. Energy Environ. Sci., 2012, 5(3):6136-6144
doi: 10.1039/c2ee02835b
Wang T Y, Liu L, Zhu Z W, et al. Energy Environ. Sci., 2013, 6(2):625-633
Laursen A B, Kegnaes S, Dahl S, et al. Energy Environ. Sci., 2012, 5(2):5577-5591
doi: 10.1039/c2ee02618j
Kibsgaard J, Chen Z B, Reinecke B N, et al. Nat. Mater., 2012, 11(11):963-969
doi: 10.1038/nmat3439
Kong D S, Wang H T, Cha J J, et al. Nano Lett., 2013, 13(3):1341-1347
doi: 10.1021/nl400258t
Jaramillo T F, Jrgensen K P, Bonde J, et al. Science, 2007, 317(5834):100-102
doi: 10.1126/science.1141483
Yin Y, Han J C, Zhang Y M, et al. J. Am. Chem. Soc., 2016, 138(25):7965-7972
doi: 10.1021/jacs.6b03714
Lau V W, Masters A F, Bond A M, et al. Chem. Eur. J., 2012, 18(26):8230-8239
doi: 10.1002/chem.v18.26
Tang Y J, Wang Y, Wang X L, et al. Adv. Energy Mater., 2016, 6(12):1600116
doi: 10.1002/aenm.201600116
Xie J F, Qu H C, Xin J P, et al. Nano Res., 2017, 10(4):1178-1188
doi: 10.1007/s12274-017-1421-x
Jayabal S, Saranya G, Wu J, et al. J. Mater. Chem. A, 2017, 5(47):24540-24563
doi: 10.1039/C7TA08327K
Yu X Y, Feng Y, Jeon Y, et al. Adv. Mater., 2016, 28(40):9006-9011
doi: 10.1002/adma.v28.40
Wu L Q, Xu X B, Zhao Y Q, et al. Appl. Surf. Sci., 2017, 425:470-477
doi: 10.1016/j.apsusc.2017.06.223
Zhao X, Ma X, Lu Q Q, et al. Electrochim. Acta, 2017, 249:72-78
doi: 10.1016/j.electacta.2017.08.004
Ye L J, Chen S J, Li W J, et al. J. Phys. Chem. C, 2015, 119(17):9560-9567
doi: 10.1021/jp5128018
Li R C, Yang L J, Xiong T L, et al. J. Power Sources, 2017, 356:133-139
doi: 10.1016/j.jpowsour.2017.04.060
Guo J X, Li F F, Sun Y F, et al. J. Power Sources, 2015, 291:195-200
doi: 10.1016/j.jpowsour.2015.05.034
Cao P F, Peng J, Li J Q, et al. J. Power Sources, 2017, 347:210-219
doi: 10.1016/j.jpowsour.2017.02.056
Paniagua S A, Baltazar J, Sojoudi H, et al. Mater. Horiz., 2014, 1:111-115
doi: 10.1039/C3MH00035D
Xu X B, Sun Y, Qiao W, et al. Appl. Surf. Sci., 2017, 396:1520-1527
doi: 10.1016/j.apsusc.2016.11.201
Li Y G, Wang H L, Xie L M, et al. J. Am. Chem. Soc., 2011, 133(19):7296-7299
doi: 10.1021/ja201269b
WAN Meng, YU Dan-Ni, ZHU Han, et al. Chinese J. Inorg. Chem., 2017, 33(4):595-600
Hua S X, Qu D, An L, et al. Chin. J. Catal., 2017, 38(6):1028-1037
doi: 10.1016/S1872-2067(17)62830-4
Guo Y X, Gan L F, Shang C S, et al. Adv. Funct. Mater., 2017, 27(5):1602699
doi: 10.1002/adfm.v27.5
Yin X Y, Yan Y, Miao M, et al. Chem. Eur. J., 2017, 24(3):556-560
Yu H T, Zhang B W, Bulin C K, et al. Sci. Rep., 2016, 6:36143
doi: 10.1038/srep36143
Xu S R, Zhu Q, Chen T, et al. Mater. Chem. Phys., 2018, 219:399-410
doi: 10.1016/j.matchemphys.2018.08.048
Bosch-Navarro C, Coronado E, Marti-Gastaldo C, et al. Nanoscale, 2012, 4(13):3977-3982
doi: 10.1039/c2nr30605k
Gopalakrishnan D, Damien D, Shaijumon M M. ACS Nano, 2014, 8(5):5297-5303
doi: 10.1021/nn501479e
Li H, Zhang Q, Yap C C R, et al. Adv. Funct. Mater., 2012, 22(7):1385-1390
doi: 10.1002/adfm.v22.7
Li F, Li J, Lin X Q, et al. J. Power Sources, 2015, 300:301-308
doi: 10.1016/j.jpowsour.2015.09.084
Bonde J, Moses P G, Jaramillo T F, et al. Faraday Discuss., 2009, 140:219-231
doi: 10.1039/B803857K
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024
Hailang JIA , Yujie LU , Pengcheng JI . Preparation and properties of nitrogen and phosphorus co-doped graphene carbon aerogel supported ruthenium electrocatalyst for hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2327-2336. doi: 10.11862/CJIC.20250021
Wei Sun , Yongjing Wang , Kun Xiang , Saishuai Bai , Haitao Wang , Jing Zou , Arramel , Jizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-0. doi: 10.3866/PKU.WHXB202312010
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
Chaolin Mi , Yuying Qin , Xinli Huang , Yijie Luo , Zhiwei Zhang , Chengxiang Wang , Yuanchang Shi , Longwei Yin , Rutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011
Haodong JIN , Qingqing LIU , Chaoyang SHI , Danyang WEI , Jie YU , Xuhui XU , Mingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
Wenruo NI , Hongpeng LI , Yun ZHANG , Yiran TIAN , Jiehui RUI , Yingcheng TONG , Xiaolin PI , Zhenyan TANG . Research progress of ruthenium alloy catalysts in hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 23-44. doi: 10.11862/CJIC.20250188
Han ZHANG , Jianfeng SUN , Jinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098
Anqun LAI , Qiaoyu WU , Qingqing LIANG , Qiyong LI , Guowen DONG , Yongjie DING , Jia′nan CHEN , Qing YAN , Zhonghua PAN , Wangchuan XIAO . Electrocatalytic water oxidation properties of Nd-Co polynuclear complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2527-2535. doi: 10.11862/CJIC.20250151
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
Xueting Cao , Shuangshuang Cha , Ming Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041
Xinyi Zhang , Kai Ren , Yanning Liu , Zhenyi Gu , Zhixiong Huang , Shuohang Zheng , Xiaotong Wang , Jinzhi Guo , Igor V. Zatovsky , Junming Cao , Xinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057
Chengxiao Zhao , Zhaolin Li , Dongfang Wu , Xiaofei Yang . SBA-15 templated covalent triazine frameworks for boosted photocatalytic hydrogen production. Acta Physico-Chimica Sinica, 2026, 42(1): 100149-0. doi: 10.1016/j.actphy.2025.100149
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Ye Wang , Ruixiang Ge , Xiang Liu , Jing Li , Haohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
Dingwen CHEN , Siheng YANG , Haiyan FU , Hua CHEN , Xueli ZHENG , Weichao XUE , Jiaqi XU , Ruixiang LI . NiOOH-mediated synthesis of gold nanoaggregates for electrocatalytic performance for selective oxidation of glycerol to glycolate. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2317-2326. doi: 10.11862/CJIC.20250053
(a) FESEM image, (b) EDS spectrum, (c, d) TEM image, (e) scanning transmission electron microscope (STEM) image and (f) corresponding element mappings of C, N, S and Mo
(a) Survey spectrum; (b) Element composition; Spectra of (c) C1s, (d) N1s, (e) Mo3d and (f) S2p
(a) LSV curves and (b) Tafel curves of rGO, UT-MoS2/rGO and Pt/C; (c) CV curves at differentscan rates of UT-MoS2/rGO;
(d) Difference of current density at 0.15 V (vs RHE) varied with scan rate; (e) EIS of rGO, MoS2 and UT-MoS2/rGO;
(f) Durability test of UT-MoS2/rGO