Citation: LEI Li-Ling, YANG Qing-Xiang, ZHAO Jun-Hong, ZHANG Yan, JIA Chao-Yang, LU Ran, NIE Li-Min, CHEN Zhi-Jun. Preparation and Adsorption of 2-Nitro-1, 3-benzenediol of Fe3O4/GO/PPy Composite[J]. Chinese Journal of Inorganic Chemistry, ;2019, 35(4): 658-666. doi: 10.11862/CJIC.2019.078 shu

Preparation and Adsorption of 2-Nitro-1, 3-benzenediol of Fe3O4/GO/PPy Composite

  • Corresponding author: CHEN Zhi-Jun, mcchenzj@zzuli.edu.cn
  • Received Date: 20 November 2018
    Revised Date: 21 February 2019

Figures(11)

  • In order to improve the ability to remove 2-nitro-1, 3-benzenediol (NRC) in water, Fe3O4/GO/PPy ternary composites were prepared by hydrothermal method using GO prepared by modified Hummers method. UV-visible absorption spectroscopy (UV-Vis), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), ζ potential analysis to study the structural of magnetic nanocomposites, while the pH value of the solution, the amount of adsorbent, initial concentration, adsorption time and temperature on the adsorption of NRC were studied by adsorption kinetics and adsorption isotherms. The results showed that the prepared Fe3O4/GO/PPy composites were layered dispersed structure; GO layer structure was stripped; PPy and Fe3O4 particles irregularly interspersed among the GO sheets. Fe3O4 particles were the polyhedral crystal structure with polyhedral size in the range of 100~300 nm. The interface between Fe3O4 and PPy particles in the graphene sheet layer was in close contact with each other; Fe3O4/GO/PPy could easily separated in water because of the superparamagnetism. Fe3O4/GO/PPy could be separated with 40 s under external magnetic field and the removal ratio of the NRC was 91.6%. The adsorption property of Fe3O4/GO/PPy for NRC obtained the strongest adsorption under the NRC initial concentration (C0) was 200 mg·L-1, pH value was 5.00±0.05, tempreture (T) was 318.15 K, adsorbent dosage (m) was 10 mg·L-1 and time (t) was 6 h, and the adsorption amount reached 163.3 mg·g-1. The adsorption kinetics of NRC follows the second-order kinetic model, and the adsorption isotherm conforms to the Langmuir model. After using NRC for five times, the removal rate decreased from 91.6% to 77.6%, that illustrated Fe3O4/GO/PPy magnetic complex possessed good stability and repeated use ability.
  • 加载中
    1. [1]

      (a) SONG Lian-Peng(宋连朋), WEI Lian-Yu(魏连雨), ZHAO Le-Jun(赵乐军), et al. Water Supply and Sewerage(给水排水), 2013, 39(3): 39-44
      (b)HUANG Tai-Biao(黄太彪), LI Liu-Zhu(李刘柱), GAO Song(高嵩), et al. Industrial Water and Wastewater(工业用水与废水), 2016, 47(4): 12-15

    2. [2]

      (a) Korotcenkov G, Brinzari V, Cho B K. Microchim. Acta, 2016, 183(3): 1033-1054
      (b)Qin Y L, Long M, Tan B H, et al. Nano-Micro. Lett., 2014, 6(2): 125-135

    3. [3]

      (a) Leong M L, Lee K M, Lai S O, et al. Desalination, 2011, 270(1): 181-187
      (b)Ben-Youssef C, Vázquez-Rodríguez G A. Bioresour. Technol., 2011, 102(4): 3740-3747

    4. [4]

      Steevensz A, Madur S, Feng W, et al. Enzyme Microb. Technol., 2014, 55(2):65-71
       

    5. [5]

      Madani K. J. Environ. Stud. Sci., 2014, 4(4):315-328  doi: 10.1007/s13412-014-0182-z

    6. [6]

      Hadjltaief H B, Costa P D, Beaunier P, et al. Appl. Clay Sci., 2014, 91-92(15):46-54
       

    7. [7]

      Shimizu A, Tokumura M, Nakajima K, et al. J. Hazard. Mater., 2012, 201(1):60-67
       

    8. [8]

      Nikazar M, Alizadeh M, Lalavi R, et al. Iran. J. Environ. Health Sci. Eng., 2014, 12(1):12-21  doi: 10.1186/2052-336X-12-12

    9. [9]

      Yang C F, Yang S Y, Qian Y, et al. Ind. Eng. Chem. Res., 2013, 52(34):12108-12115  doi: 10.1021/ie4007535

    10. [10]

      (a) Ehtash M, Fournier-Salaün M C, Dimitrov K, et al. Chem. Eng. J., 2014, 250(6): 42-47
      (b)Kazemi P, Peydayesh M, Bandegi A, et al. Chem. Eng. Res. Des., 2014, 92(2): 375-383

    11. [11]

      Zhou C, Zhu H, Wang Q, et al. RSC Adv., 2017, 7(30):18466-18479  doi: 10.1039/C7RA01147D

    12. [12]

      (a) Bizerea S O, Preda E, Botez A, et al. Environ. Sci. Pollut. Res., 2013, 20: 6367-6381
      (b)Guo X L, Wang J, Wang Y, et al. Procedia Environ. Sci., 2012, 12(12): 152-158
      (c)Giraldo L, Moreno-Piraján J C. J. Anal. Appl. Pyrolysis, 2014, 106: 41-47

    13. [13]

      Wu Z B, Yuan X Z, Zhang J, et al. ChemCatChem, 2017, 9(2):23-45
       

    14. [14]

      (a) Ekramul Mahmud H N, Huq A K O, Yahya R B. Cheminformatics, 2016, 47(13): 14778-14791
      (b)Setshedi K Z, Bhaumik M, Onyango M S, et al. Chem. Eng. J., 2015, 262(6): 921-931
      (c)Wu M, Han H F, Ni L L, et al. Materials, 2018, 11(1): 164-175
      (d)Simamora P, Saragih C S, Hasibuan D P, et al. Mater. Today, 2018, 5(7): 14970-14974

    15. [15]

      (a) Hu H F, Yang L, Lin Z, et al. Int. J. Biol. Macromol., 2018, 114(15): 256-262
      (b)Dai Y M, Zou J Q, Liu D Y, et al. Colloids Surf. A, 2018, 550(5): 90-98

    16. [16]

      Wang Y H, Li L L, Luo C N, et al. Int. J. Biol. Macromol., 2016, 86:505-511  doi: 10.1016/j.ijbiomac.2016.01.035

    17. [17]

      Karthik R, Meenakshi S. Synth. Met., 2014, 198:181-187  doi: 10.1016/j.synthmet.2014.10.012

    18. [18]

      Chandra V, Kim K S. Chem. Commun., 2011, 47(13):3942-3944  doi: 10.1039/c1cc00005e

    19. [19]

      Wang Y Z, Wang Y S, Yan X R, et al. Chemosphere, 2016, 153:485-493  doi: 10.1016/j.chemosphere.2016.03.036

    20. [20]

      Mthombeni N H, Mbakop S, Ochieng A, et al. J. Taiwan Inst. Chem. Eng., 2016, 66:172-180  doi: 10.1016/j.jtice.2016.06.016

    21. [21]

      Gari V R D K, Min K. Monatsh. Chem., 2015, 146(9):1445-1453  doi: 10.1007/s00706-015-1429-4

    22. [22]

      Kumar V, Jahan F, Raghuwanshi S, et al. Biotechnol. Bioprocess Eng., 2013, 18:787-795  doi: 10.1007/s12257-012-0793-8

    23. [23]

      Setshedi K Z, Bhaumik M, Onyango M S, et al. Chem. Eng. J., 2015, 262:921-931  doi: 10.1016/j.cej.2014.10.034

    24. [24]

      (a) Gao F, Gu H B, Wang H W, et al. RSC Adv., 2015, 5(74): 60208-60219
      (b)Zabihi M, Ahmadpour A, Asl A H. J. Hazard. Mater., 2009, 167(1): 230-236
      (c)Wang H, Yuan X Z, Yan W, et al.Chem. Eng. J., 2015, 262(4): 597-606

    25. [25]

      (a) Huong P T, Lee B K, Kim J. Process Saf. Environ. Prot., 2016, 104: 314-322
      (b)Lu G R, Liu J M, Xiong Z H, et al. J. Chem. Eng. Data, 2016, 61(11): 3868-3876
      (c)Jia Z, Jiang M, Wu G. Chem. Eng. J., 2016, 307: 283-290
      (d)Li Y, Yang C X, Yan X P. Chem. Commun., 2017, 53(16): 2511-2514
      (e)Zhou M, Wu Y N, Qiao J, et al. J. Colloid Interface Sci., 2013, 405(9): 157-163
      (f)YANG Qing-Xiang (杨清香), REN Shuang-Shuang(任爽爽), ZHAO Qian-Qian(赵倩倩), et al. Chinese J. Inorg.Chem.(无机化学学报), 2017, 33(5): 843-852

    26. [26]

      Mthombeni N H, Mbakop S, Ochieng A, et al. J. Taiwan Inst. Chem. Eng., 2016, 66:172-180  doi: 10.1016/j.jtice.2016.06.016

  • 加载中
    1. [1]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    2. [2]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    3. [3]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    4. [4]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    5. [5]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    6. [6]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    9. [9]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    10. [10]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    11. [11]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    12. [12]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    13. [13]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    14. [14]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    15. [15]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    16. [16]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    17. [17]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    18. [18]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    19. [19]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    20. [20]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

Metrics
  • PDF Downloads(2)
  • Abstract views(329)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return