Citation: RAO Chen-Ying, GUO Da, SUN Xin-Yuan, OUYANG Jian-Ming. Toxicity Difference of Nano and Micron Calcium Oxalate Monohydrate on Renal Epithelial Cells[J]. Chinese Journal of Inorganic Chemistry, ;2019, 35(3): 467-476. doi: 10.11862/CJIC.2019.039 shu

Toxicity Difference of Nano and Micron Calcium Oxalate Monohydrate on Renal Epithelial Cells

  • Corresponding author: OUYANG Jian-Ming, toyjm@jnu.edu.cn
  • Received Date: 12 October 2018
    Revised Date: 28 November 2018

Figures(7)

  • Scanning electron microscope(SEM), laser confocal microscope(LSM), flow cytometry methods were used to comparatively study the toxicity difference of nano and micron calcium oxalate monohydrate(COM)on the African green monkey kidney epithelial(Vero)cells. The results revealed that both nano and micron COM could decrease cell viability, increase LDH release amount, up-regulate HA expression, decrease lysosomal integrity, decrease mitochondrial membrane potential, increased cell death rate and arrest cell cycle, which indicated that both nano and micron COM crystals could damage Vero cells and presented concentration dependent. But nano COM exhibited higher cytotoxicity and more adhesion amount than micron COM. This study may provide insights into the damage to renal epithelial cells induced by urinary crystals and the formation mechanism of kidney stones.
  • 加载中
    1. [1]

      Purnell S, Gallante B, Blum K, et al. J. Urology, 2018, 199(4):e413-e414
       

    2. [2]

      WU Zhi-Fu, WU Han-Kui, GAO Yan-Ping. Chem. Bull., 2014, 77(11):1113-1115
       

    3. [3]

      YANG Hong-Hua. Contemporary Medicine, 2018(3):107-108  doi: 10.3969/j.issn.1009-4393.2018.03.050

    4. [4]

      Xu L H R, Adams-Huet B, Poindexter J R, et al. J. Urology, 2017, 197(6):1465-1471  doi: 10.1016/j.juro.2017.01.057

    5. [5]

      Unno R, Kawabata T, Takase H, et al. J. Urology, 2018, 199(4):e76

    6. [6]

      WANG Zhu, ZHANG Jian-Wen, ZHANG Ying, et al. Journal of Modern Urology, 2018(1):52-56
       

    7. [7]

      Ito Y, Niimi K, Unno R, et al. J. Urology, 2018, 199(4):e291-e292

    8. [8]

      GAN Qiong-Zhi, SUN Xin-Yuan, YAO Xiu -Qiong, et al. Chem. J. Chinese Universities, 2016, 37(6):1050-1059
       

    9. [9]

      Abd El-Salam M, Bastos J K, Han J J, et al. J. Med. Chem., 2018, 61(4):1609-1621
       

    10. [10]

      GUO Da, XU Meng, SUN Xin-Yuan, et al. Chinese J. Inorg. Chem., 2018, 34(10):1883-1890  doi: 10.11862/CJIC.2018.212
       

    11. [11]

      Manissorn J, Fong-Ngern K, Peerapen P, et al. Sci. Rep., 2017, 7(1):1798
       

    12. [12]

      Li Y, Sun L, Jin M H, et al. Toxicol. Vitro, 2011, 25(7):1343-1352  doi: 10.1016/j.tiv.2011.05.003

    13. [13]

      Hanna L K, Johanna G, Pontus C, et al. Toxicol. Lett., 2009, 188:112-118  doi: 10.1016/j.toxlet.2009.03.014

    14. [14]

      Tamura K, Takashi N, Kumazawa R, et al. Mater. Trans., 2002, 43(12):3052-3057  doi: 10.2320/matertrans.43.3052

    15. [15]

      Chithrani B D, Chan W C W. Nano Lett., 2007, 7(6):1542-1550  doi: 10.1021/nl070363y

    16. [16]

      Gao J, Xue J F, Xu M, et al. Int. J. Nanomed., 2014, 9:4399-4409
       

    17. [17]

      Verdesca S, Fogazzi G B, Garigali G, et al. Clin. Chem. Lab. Med., 2011, 49(3):515-520
       

    18. [18]

      Sun X Y, Gan Q Z, Ouyang J M. Sci. Rep., 2017, 7:41949  doi: 10.1038/srep41949

    19. [19]

      Sun X Y, Ouyang J M, Gan Q Z, et al. J. Biomed. Nanotechnol., 2016, 12:2001-2014  doi: 10.1166/jbn.2016.2289

    20. [20]

      King M, Mcclure W F, Andrews L C. International Center for Diffraction Data. Newtown Square, PA, USA:ICDD, 1992.

    21. [21]

      Newton D A, Lottes R G, Pamtlia M K, et al. Am. J. Respir. Crit. Care Med., 2017, 195:A2391

    22. [22]

      Scaffidi P, Misteli T, Bianchi M E. Nature, 2002, 418(6894):191  doi: 10.1038/nature00858

    23. [23]

      Schutt F, Davies S, Kopitz J, et al. Invest. Ophthalmol. Vis. Sci., 2000, 41(8):2303-2308

    24. [24]

      Gottlieb E, Vander Heiden M G, Thompson C B. Mol. Cell. Biol., 2000, 20(15):5680-5689  doi: 10.1128/MCB.20.15.5680-5689.2000

    25. [25]

      Orrenius S. Drug Metab. Rev., 2007, 39(2/3):443-455

    26. [26]

      Bononi A, Giorgi C, Patergnani S, et al. Nature, 2017, 546(7659):549

    27. [27]

      Roos W P, Frohnapfel L, Quiros S, et al. Cancer Lett., 2018, 424:119-126  doi: 10.1016/j.canlet.2018.03.025

    28. [28]

      Pang Y C, Xi J Y, Xu Y, et al. Appl. Microbiol. Biotechnol., 2016, 100(14):6435-6446  doi: 10.1007/s00253-016-7452-5

    29. [29]

      Riccardi C, Nicoletti I. Nat. Protoc., 2006, 1(3):1458  doi: 10.1038/nprot.2006.238

    30. [30]

      Ito T, Iida-Tanaka N, Niidome T, et al. J. Control. Release, 2006, 112(3):382-388  doi: 10.1016/j.jconrel.2006.03.013

    31. [31]

      Ioachim E, Charchanti A, Briasoulis E, et al. Eur. J. Cancer, 2002, 38(18):2362-2370  doi: 10.1016/S0959-8049(02)00210-1

    32. [32]

      Xi Q, Ouyang J M, Pu J X, et al. Urology, 2015, 86(4):844.e1

    33. [33]

      Vinaiphat A, Aluksanasuwan S, Manissorn J, et al. Proteomics, 2017, 17(15/16):1700192
       

    34. [34]

      Tsuji H, Wang W, Sunil J, et al. World J. Urol., 2016, 34(1):89-95  doi: 10.1007/s00345-015-1563-y

    35. [35]

      Mattheolabakis G, Milane L, Singh A, et al. J. Drug Target., 2015, 23(7/8):605-618
       

    36. [36]

      Novgorodov S A, Voltin J R, Gooz M A, et al. J. Lipid Res., 2018, 59(2):312-329  doi: 10.1194/jlr.M080374

    37. [37]

      Plotegher N, Duchen M R. Trends Mol. Med., 2017, 23(2):116-134  doi: 10.1016/j.molmed.2016.12.003

    38. [38]

      Zhang J, Wang J, Wong Y K, et al. Cell Death Dis., 2018, 9(6):614  doi: 10.1038/s41419-018-0571-4

    39. [39]

      Lammel T, Boisseaux P, Fernández-Cruz M L, et al. Part. Fibre Toxicol., 2013, 10(2):174-184
       

    40. [40]

      Pavan C, Turci F, Tomatis M, et al. Colloids Surf. B, 2017, 157:449-455  doi: 10.1016/j.colsurfb.2017.06.012

  • 加载中
    1. [1]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    2. [2]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    3. [3]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    4. [4]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    5. [5]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    6. [6]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    7. [7]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    8. [8]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    9. [9]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    10. [10]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    11. [11]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    12. [12]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

Metrics
  • PDF Downloads(3)
  • Abstract views(963)
  • HTML views(225)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return