Citation: XIONG Wei, TANG Rui-Kang, MA Wei-Min, ZOU Zhi-Gang. Research Progress on Modification of Organisms by Biomimetic Inorganic Nanomaterials[J]. Chinese Journal of Inorganic Chemistry, ;2019, 35(1): 1-24. doi: 10.11862/CJIC.2019.008 shu

Research Progress on Modification of Organisms by Biomimetic Inorganic Nanomaterials

  • Corresponding author: ZOU Zhi-Gang, zgzou@nju.edu.cn
  • Received Date: 4 August 2018
    Revised Date: 29 October 2018

Figures(20)

  • During the course of evolution, organisms have learned to utilize materials to adapt themselves to changes in the environment. In nature, a few organisms can form inorganic nanomaterials through biomineralization, which can provide extensive protection or unique functions. However, some organisms do not have biomineralization ability in nature. Inspired by nanomodification of organisms in nature, scientists have attempted to modify the organisms by artificially introduction of nanomaterials. In this review, modification of organisms by nanomaterials based on bio-material facial composite technology are systematically elaborated from the aspects of regulatory mechanism, modification methods, functions and applications, and the research progress of nanomodification of organisms by biomimetic mineralization is highlighted. The current situation in the field of modification of organisms by biomimetic inorganic nanomaterials is analyzed and summarized, outlook for the future of the field is also prospected.
  • 加载中
    1. [1]

      Schopf J W. Earth's Earliest Biosphere:its Origin and Evolution. Princeton:Princeton University Press, 1983.

    2. [2]

      Morris S C. Proc. Natl. Acad. Sci. U.S.A., 2000, 97(9):4426-4429  doi: 10.1073/pnas.97.9.4426

    3. [3]

      Valentine J W, Jablonski D, Erwin D H. Development, 1999, 126(5):851-859
       

    4. [4]

      Marshall C R. Annu. Rev. Earth Planet. Sci., 2006, 34:355-384  doi: 10.1146/annurev.earth.33.031504.103001

    5. [5]

      Lowenstam H A. Science, 1981, 211(4487):1126-1131  doi: 10.1126/science.7008198

    6. [6]

      Lowenstam H A, Margulis L. Biosystems, 1980, 12(1/2):27-41
       

    7. [7]

      CUI Fu-Zhai, FENG Qing-Ling. Bioma-teriology. Beijing:Tsinghua University Press, 2004.

    8. [8]

      Shin H, Jo S, Mikos A. Biomaterials, 2003, 24(24):4353-4364  doi: 10.1016/S0142-9612(03)00339-9

    9. [9]

      Romano P, Fabritius H, Raabe D. Acta Biomater., 2007, 3(3):301-309
       

    10. [10]

      Lowenstam H A, Weiner S. On Biomineralization. Oxford:Oxford University Press, 1989.

    11. [11]

      Faivre D, Schüler D. Chem. Rev., 2008, 108(11):4875-4898  doi: 10.1021/cr078258w

    12. [12]

      Aizenberg J, Tkachenko A, Weiner S, et al. Nature, 2001, 412(6849):819-822  doi: 10.1038/35090573

    13. [13]

      Addadi L, Joester D, Nudelman F, et al. Chem.-Eur. J., 2006, 12(4):980-987  doi: 10.1002/(ISSN)1521-3765

    14. [14]

      Yao H, Dao M, Imholt T, et al. Proc. Natl. Acad. Sci. U.S.A., 2010, 107(3):987-992  doi: 10.1073/pnas.0912988107

    15. [15]

      Hamm C E, Merkel R, Springer O, et al. Nature, 2003, 421(6925):841-843  doi: 10.1038/nature01416

    16. [16]

      Sumper M, Brunner E. Adv. Funct. Mater., 2006, 16(1):17-26
       

    17. [17]

      Milligan A J, Morel F M M. Science, 2002, 297(5588):1848-1850  doi: 10.1126/science.1074958

    18. [18]

      Nys Y, Gautron J, Garcia-Ruiz J M, et al. C. R. Palevol, 2004, 3(6/7):549-562
       

    19. [19]

      Wang B, Liu P, Tang R K. Bioessays, 2010, 32(8):698-708  doi: 10.1002/bies.200900120

    20. [20]

      Arias J L, Fink D J, Xiao S Q, et al. Int. Rev. Cytol., 1993, 145:217-250
       

    21. [21]

      Karlsson O, Lilja C. Zoology, 2008, 111(6):494-502  doi: 10.1016/j.zool.2007.11.005

    22. [22]

      Bazylinski D A, Frankel R B. Nat. Rev. Microbiol., 2004, 2(3):217-230  doi: 10.1038/nrmicro842

    23. [23]

      Gower L B. Chem. Rev., 2008, 108(11):4551-4627  doi: 10.1021/cr800443h

    24. [24]

      Farina M, Esquivel D M S, de Barros H G P L. Nature, 1990, 343(6255):256-258  doi: 10.1038/343256a0

    25. [25]

      Xu X R, Wang B, Tang R K. ChemSusChem, 2011, 4(10):1439-1446  doi: 10.1002/cssc.v4.10

    26. [26]

      WANG Ben, TANG Rui-Kang. Prog. Chem., 2013, 25(4):633-641
       

    27. [27]

      Park J H, Yang S H, Lee J, et al. Adv. Mater., 2014, 26(13):2001-2010  doi: 10.1002/adma.201304568

    28. [28]

      Chen W, Wang G C, Tang R K. Nano Res., 2014, 7(10):1404-1428  doi: 10.1007/s12274-014-0509-9

    29. [29]

      YANG Yu-Ling, WANG Guang-Chuan, TANG Rui-Kang. Sci. Sin.:Chim., 2014, 44(4):601-610
       

    30. [30]

      Park J H, Hong D, Lee J, et al. Acc. Chem. Res., 2016, 49(5):792-800  doi: 10.1021/acs.accounts.6b00087

    31. [31]

      Liu Z M, Xu X R, Tang R K. Adv. Funct. Mater., 2016, 26(12):1862-1880  doi: 10.1002/adfm.201504480

    32. [32]

      Kim B J, Cho H, Park J H, et al. Adv. Mater., 2018, 30(14):1706063  doi: 10.1002/adma.v30.14

    33. [33]

      Mann S. Biomineralization:Principles and Concepts in Bioi-norganic Materials Chemistry. Oxford:Oxford University Press, 2001.

    34. [34]

      Elhadj S, Salter E A, Wierzbicki A, et al. Cryst. Growth Des., 2006, 6(1):197-201  doi: 10.1021/cg050288+

    35. [35]

      Addadi L, Weiner S. Proc. Natl. Acad. Sci. U.S.A., 1985, 82(12):4110-4114  doi: 10.1073/pnas.82.12.4110

    36. [36]

      Chu X B, Jiang W G, Zhang Z S, et al. J. Phys. Chem. B, 2011, 115(5):1151-1157  doi: 10.1021/jp106863q

    37. [37]

      Tarasevich B J, Chusuei C C, Allara D L. J. Phys. Chem. B, 2003, 107(38):10367-10377  doi: 10.1021/jp027445p

    38. [38]

      Nonoyama T, Kinoshita T, Higuchi M, et al. Langmuir, 2011, 27(11):7077-7083  doi: 10.1021/la2006953

    39. [39]

      Toworfe G K, Composto R J, Shapiro I M, et al. Biomaterials, 2006, 27(4):631-642  doi: 10.1016/j.biomaterials.2005.06.017

    40. [40]

      Kröger N, Lorenz S, Brunner E, et al. Science, 2002, 298(5593):584-586  doi: 10.1126/science.1076221

    41. [41]

      Kröger N, Deutzmann R, Sumper M. Science, 1999, 286(5442):1129-1132  doi: 10.1126/science.286.5442.1129

    42. [42]

      Sumper M, Lorenz S, Brunner E. Angew. Chem. Int. Ed., 2003, 42(42):5192-5195  doi: 10.1002/(ISSN)1521-3773

    43. [43]

      Pohnert G. Angew. Chem. Int. Ed., 2002, 41(17):3167-3169  doi: 10.1002/1521-3773(20020902)41:17<>1.0.CO;2-C

    44. [44]

      Kröger N, Deutzmann R, Bergsdorf C, et al. Proc. Natl. Acad. Sci. U.S.A., 2000, 97(26):14133-141138  doi: 10.1073/pnas.260496497

    45. [45]

      Dickerson M B, Sandhage K H, Naik R R. Chem. Rev., 2008, 108(11):4935-4978  doi: 10.1021/cr8002328

    46. [46]

      Wang E, Lee S H, Lee S W. Biomacromolecules, 2011, 12(3):672-680  doi: 10.1021/bm101322m

    47. [47]

      Sarikaya M, Tamerler C, Jen A K, et al. Nat. Mater., 2003, 2(9):577-585  doi: 10.1038/nmat964

    48. [48]

      Hartgerink J D, Beniash E, Stupp S I. Science, 2001, 294(5547):1684-1688  doi: 10.1126/science.1063187

    49. [49]

      Wong P F C, Patwardhan S V, Belton D J, et al. Proc. Natl. Acad. Sci. U.S.A., 2006, 103(25):9428-9433  doi: 10.1073/pnas.0601096103

    50. [50]

      Xu A W, Ma Y, Cölfen H. J. Mater. Chem., 2007, 17(5):415-449
       

    51. [51]

      Aksay I A, Trau M, Manne S, et al. Science, 1996, 273(5277):892-898  doi: 10.1126/science.273.5277.892

    52. [52]

      Mann S. Nature, 1993, 365(6446):499-505  doi: 10.1038/365499a0

    53. [53]

      Loste E, Park R J, Warren J, et al. Adv. Funct. Mater., 2004, 14(12):1211-1220  doi: 10.1002/(ISSN)1616-3028

    54. [54]

      Meldrum F C, Heywood B R, Mann S. Science, 1992, 257(5069):522-523  doi: 10.1126/science.1636086

    55. [55]

      Meldrum F C, Wade V J, Nimmo D L, et al. Nature, 1991, 349(6311):684-687  doi: 10.1038/349684a0

    56. [56]

      Ensign D, Young M, Douglas T. Inorg. Chem., 2004, 43(11):3441-3446  doi: 10.1021/ic035415a

    57. [57]

      Allen M, Willits D, Mosolf J, et al. Adv. Mater., 2002, 14(21):1562-1565  doi: 10.1002/1521-4095(20021104)14:21<1562::AID-ADMA1562>3.0.CO;2-D

    58. [58]

      Allen M, Willits D, Young M, et al. Inorg. Chem., 2003, 42(20):6300-6305  doi: 10.1021/ic0343657

    59. [59]

      Douglas T, Strable E, Willits D, et al. Adv. Mater., 2002, 14(6):415-418  doi: 10.1002/(ISSN)1521-4095

    60. [60]

      Hosein H A, Strongin D R, Allen M, et al. Langmuir, 2004, 20(23):10283-10287  doi: 10.1021/la0491100

    61. [61]

      Cölfen H, Mann S. Angew. Chem. Int. Ed., 2003, 42(21):2350-2365  doi: 10.1002/anie.200200562

    62. [62]

      Kniep R, Busch S. Angew. Chem. Int. Ed., 1996, 35(22):2624-2626  doi: 10.1002/(ISSN)1521-3773

    63. [63]

      Puntes V F, Krishnan K M, Alivisatos A P. Science, 2001, 291(5511):2115-2117  doi: 10.1126/science.1057553

    64. [64]

      Urbach A R, Love J C, Prentiss M G, et al. J. Am. Chem. Soc., 2003, 125(42):12704-12705  doi: 10.1021/ja0378308

    65. [65]

      Grzybowski B A, Stone H A, Whitesides G M. Nature, 2000, 405(6790):1033-1036  doi: 10.1038/35016528

    66. [66]

      Love J C, Urbach A R, Prentiss M G, et al. J. Am. Chem. Soc., 2003, 125(42):12696-12697  doi: 10.1021/ja037642h

    67. [67]

      Decher G. Science, 1997, 277(5330):1232-1237  doi: 10.1126/science.277.5330.1232

    68. [68]

      Wang B, Liu P, Jiang W G, et al. Angew. Chem. Int. Ed., 2008, 47(19):3560-3564  doi: 10.1002/(ISSN)1521-3773

    69. [69]

      Mell J C, Burgess S M. Encyclopedia of Life Sciences, 2002:1-8

    70. [70]

      Botstein D, Fink G R. Science, 1988, 240(4858):1439-1443  doi: 10.1126/science.3287619

    71. [71]

      Goffeau A, Barrell B G, Bussey H, et al. Science, 1996, 274(5287):546-567  doi: 10.1126/science.274.5287.546

    72. [72]

      Cabib E, Roh D H, Schmidt M, et al. J. Biol. Chem., 2001, 276(23):19679-19682  doi: 10.1074/jbc.R000031200

    73. [73]

      Yang S H, Lee K B, Kong B, et al. Angew. Chem. Int. Ed., 2009, 48(48):9160-9163  doi: 10.1002/anie.v48:48

    74. [74]

      Yang S H, Ko E H, Choi I S. Langmuir, 2011, 28(4):2151-2155
       

    75. [75]

      Wang G C, Wang L J, Liu P, et al. ChemBioChem, 2010, 11(17):2368-2373  doi: 10.1002/cbic.v11.17

    76. [76]

      Atchison N, Fan W, Brewer D D, et al. Angew. Chem. Int. Ed., 2011, 50(7):1617-1621  doi: 10.1002/anie.201006231

    77. [77]

      Lee J, Choi J, Park J H, et al. Angew. Chem. Int. Ed., 2014, 53(31):8056-8059  doi: 10.1002/anie.201402280

    78. [78]

      Park J H, Choi I S, Yang S H. Chem. Commun., 2015, 51(25):5523-5525  doi: 10.1039/C4CC08544B

    79. [79]

      Zhao R B, Wang B, Yang X Y, et al. Angew. Chem. Int. Ed., 2016, 55(17):5225-5229  doi: 10.1002/anie.201601364

    80. [80]

      Jiang N, Yang X Y, Ying G L, et al. Chem. Sci., 2015, 6(1):486-491  doi: 10.1039/C4SC02638A

    81. [81]

      Drachuk I, Shchepelina O, Harbaugh S, et al. Small, 2013, 9(18):3128-3137  doi: 10.1002/smll.v9.18

    82. [82]

      Lee H, Dellatore S M, Miller W M, et al. Science, 2007, 318(5849):426-430  doi: 10.1126/science.1147241

    83. [83]

      Yang S H, Kang S M, Lee K B, et al. J. Am. Chem. Soc., 2011, 133(9):2795-2797  doi: 10.1021/ja1100189

    84. [84]

      Hong D, Lee H, Ko E H, et al. Chem. Sci., 2015, 6(1):203-208  doi: 10.1039/C4SC02789B

    85. [85]

      Wang B, Wang G C, Zhao B J, et al. Chem. Sci., 2014, 5(9):3463-3468  doi: 10.1039/C4SC01120A

    86. [86]

      Dunn T, Gable K, Beeler T. J. Biol. Chem., 1994, 269(10):7273-7278
       

    87. [87]

      Clapham D E. Cell, 1995, 80(2):259-268  doi: 10.1016/0092-8674(95)90408-5

    88. [88]

      Maheshwari V, Fomenko D E, Singh G, et al. Langmuir, 2009, 26(1):371-377
       

    89. [89]

      Kempaiah R, Chung A, Maheshwari V. ACS Nano, 2011, 5(7):6025-6031  doi: 10.1021/nn201791k

    90. [90]

      Sakimoto K K, Wong A B, Yang P D. Science, 2016, 351(6268):74-77  doi: 10.1126/science.aad3317

    91. [91]

      Wang X Y, Deng Y Q, Shi H Y, et al. Small, 2010, 6(3):351-354
       

    92. [92]

      Wang G C, Li X F, Mo L J, et al. Angew. Chem. Int. Ed., 2012, 124(42):10728-10731  doi: 10.1002/ange.201206154

    93. [93]

      Guan C F, Wang G, Ji J, et al. J. Sol-Gel Sci. Technol., 2008, 48(3):369-377  doi: 10.1007/s10971-008-1811-3

    94. [94]

      Müller W E G, Engel S, Wang X H, et al. Biomaterials, 2008, 29(7):771-779  doi: 10.1016/j.biomaterials.2007.10.038

    95. [95]

      Lee S W, Mao C, Flynn C E, et al. Science, 2002, 296(5569):892-895  doi: 10.1126/science.1068054

    96. [96]

      Nam K T, Kim D W, Yoo P J, et al. Science, 2006, 312(5775):885-888  doi: 10.1126/science.1122716

    97. [97]

      Lee Y J, Yi H, Kim W J, et al. Science, 2009, 324(5930):1051-1055
       

    98. [98]

      Nuraje N, Dang X, Qi J, et al. Adv. Mater., 2012, 24(21):2885-2889  doi: 10.1002/adma.v24.21

    99. [99]

      Wang G C, Cao R Y, Chen R, et al. Proc. Natl. Acad. Sci. U.S.A., 2013, 110(19):7619-7624  doi: 10.1073/pnas.1300233110

    100. [100]

      Celiker H, Gore J. Trends Cell Biol., 2013, 23(1):9-15  doi: 10.1016/j.tcb.2012.08.010

    101. [101]

      Grosberg R K, Strathmann R R. Trends Ecol. Evol., 1998, 13(3):112-116  doi: 10.1016/S0169-5347(97)01313-X

    102. [102]

      Simpson C. Proc. R. Soc. B, 2012, 279(1726):116-121  doi: 10.1098/rspb.2011.0766

    103. [103]

      Xiong W, Zhao X H, Zhu G X, et al. Angew. Chem. Int. Ed., 2015, 54(41):11961-11965  doi: 10.1002/anie.201504634

    104. [104]

      Xiong W, Tang Y M, Shao C Y, et al. Environ. Sci. Technol., 2017, 51(21):12717-12726  doi: 10.1021/acs.est.7b02985

    105. [105]

      Wei W, Sun P Q, Li Z, et al. Sci. Adv., 2018, 4(2):eaap9253  doi: 10.1126/sciadv.aap9253

    106. [106]

      Carturan G, Campostrini R, Dire S, et al. J. Mol. Catal., 1989, 57(1):L13-L16
       

    107. [107]

      Nassif N, Bouvet O, Rager M N, et al. Nat. Mater., 2002, 1(1):42-44  doi: 10.1038/nmat709

    108. [108]

      Rooke J C, Léonard A, Sarmento H, et al. J. Mater. Chem., 2008, 18(24):2833-2841  doi: 10.1039/b802705f

    109. [109]

      Rooke J C, Léonard A, Meunier C F, et al. J. Colloid Interface Sci., 2010, 344(2):348-352  doi: 10.1016/j.jcis.2009.12.053

    110. [110]

      Wang G C, Wang H J, Zhou H Y, et al. ACS Nano, 2015, 9(1):799-808  doi: 10.1021/nn5063276

    111. [111]

      Duan P Q, Huang T T, Xiong W, et al. Langmuir, 2017, 33(9):2454-2459  doi: 10.1021/acs.langmuir.6b04421

    112. [112]

      Johnson P E, Muttil P, MacKenzie D, et al. ACS Nano, 2015, 9(7):6961-6977  doi: 10.1021/acsnano.5b01139

    113. [113]

      Ma X M, Chen H F, Yang L, et al. Angew. Chem. Int. Ed., 2011, 50(32):7414-7417  doi: 10.1002/anie.v50.32

    114. [114]

      Senisterra G, Chau I, Vedadi M. Assay Drug Dev. Technol., 2012, 10(2):128-136  doi: 10.1089/adt.2011.0390

    115. [115]

      Giugliarelli A, Sassi P, Paolantoni M, et al. J. Phys. Chem. B, 2013, 117(9):2645-2652  doi: 10.1021/jp311268x

    116. [116]

      Neethirajan S, Gordon R, Wang L J. Trends Biotechnol., 2009, 27(8):461-467  doi: 10.1016/j.tibtech.2009.05.002

    117. [117]

      Gao X P, Zou C Q, Wang L J, et al. J. Plant Nutr., 2005, 27(8):1457-1470  doi: 10.1081/PLN-200025865

    118. [118]

      Kim S G, Kim K W, Park E W, et al. Phytopathology, 2002, 92(10):1095-1103  doi: 10.1094/PHYTO.2002.92.10.1095

    119. [119]

      Ko E H, Yoon Y, Park J H, et al. Angew. Chem. Int. Ed., 2013, 52(47):12279-12282  doi: 10.1002/anie.201305081

    120. [120]

      Chen X F, Fernando G J P, Crichton M L, et al. J. Controlled Release, 2011, 152(3):349-355  doi: 10.1016/j.jconrel.2011.02.026

    121. [121]

      Braun L T J, Jezek J, Peterson S, et al. Vaccine, 2009, 27(34):4609-4614  doi: 10.1016/j.vaccine.2009.05.069

    122. [122]

      Schlehuber L D, McFadyen I J, Shu Y, et al. Vaccine, 2011, 29(31):5031-5039

    123. [123]

      Yang J J, Meng S, Xu L F, et al. Phys. Rev. Lett., 2004, 92(14):1461021-1461024

    124. [124]

      Mahadevan T S, Garofalini S H. J. Phys. Chem. C, 2008, 112(5):1507-1515  doi: 10.1021/jp076936c

    125. [125]

      Wang G C, Zhou H Y, Nian Q G, et al. Chem. Sci., 2016, 7(3):1753-1759  doi: 10.1039/C5SC03847B

    126. [126]

      Zhou H Y, Wang G C, Li X F, et al. Chem. Commun., 2016, 52(38):6447-6450  doi: 10.1039/C6CC02595A

    127. [127]

      Yang Y L, Wang G C, Zhu G X, et al. Chem. Commun., 2015, 51(41):8705-8707  doi: 10.1039/C5CC01420D

    128. [128]

      Pisciotta J M, Zou Y J, Baskakov I V. PloS One, 2010, 5(5):e18021

    129. [129]

      Falkowsky P G. Primary Productivity in the Sea. Berlin/Heidelberg:Springer Science & Business Media, 2013:19

    130. [130]

      Sumper M, Brunner E. Adv. Funct. Mater., 2006, 16(1):17-26  doi: 10.1002/(ISSN)1616-3028

    131. [131]

      Waterbury J B, Watson S W, Guillard R R L, et al. Nature, 1979, 277(5694):293-294  doi: 10.1038/277293a0

    132. [132]

      Paumann M, Regelsberger G, Obinger C, et al. BBA Bioenergetics, 2005, 1707(2/3):231-253

    133. [133]

      Blankenship R E, Tiede D M, Barber J, et al. Science, 2011, 332(6031):805-809  doi: 10.1126/science.1200165

    134. [134]

      Chen T H H, Murata N. Curr. Opin. Plant Biol., 2002, 5(3):250-257  doi: 10.1016/S1369-5266(02)00255-8

    135. [135]

      Kok B. Biochim. Biophys. Acta, 1956, 21(2):234-244  doi: 10.1016/0006-3002(56)90003-8

    136. [136]

      Powles S B. Annu. Rev. Plant Physiol., 1984, 35(1):15-44  doi: 10.1146/annurev.pp.35.060184.000311

    137. [137]

      Demmig-Adams B, Adams Ⅲ W W. Annu. Rev. Plant Physiol., 1992, 43(1):599-626
       

    138. [138]

      Xiong W, Yang Z, Zhai H L, et al. Chem. Commun., 2013, 49(68):7525-7527  doi: 10.1039/c3cc42766h

    139. [139]

      Prather M J, McElroy M B, Wofsy S C. Nature, 1984, 312(5991):227-231  doi: 10.1038/312227a0

    140. [140]

      Staehelin J, Harris N R P, Appenzeller C, et al. Rev. Geophys., 2001, 39(2):231-290  doi: 10.1029/1999RG000059

    141. [141]

      Cullen J J, Neale P J, Lesser M P. Science, 1992, 258(5082):646-650  doi: 10.1126/science.258.5082.646

    142. [142]

      Hunter J R, Taylor J H, Moser H G. Photochem. Photobiol., 1979, 29(2):325-338  doi: 10.1111/php.1979.29.issue-2

    143. [143]

      Wubben D L. J. Plankton Res., 2000, 22(11):2095-2104  doi: 10.1093/plankt/22.11.2095

    144. [144]

      Quintero-Torres R, Aragón J L, Torres M, et al. Phys. Rev. E, 2006, 74(3):032901  doi: 10.1103/PhysRevE.74.032901

    145. [145]

      Wang B, Liu P, Tang Y Y, et al. PloS One, 2010, 5(4):e9963

    146. [146]

      Lockett M R, Lange H, Breiten B, et al. Angew. Chem. Ed. Int., 2013, 125(30):7868-7871  doi: 10.1002/ange.v125.30

    147. [147]

      Breiten B, Lockett M R, Sherman W, et al. J. Am. Chem. Soc., 2013, 135(41):15579-15584  doi: 10.1021/ja4075776

    148. [148]

      Wu Z J, Asokan A, Samulski R J. Mol. Ther., 2006, 14(3):316-327  doi: 10.1016/j.ymthe.2006.05.009

    149. [149]

      Blömer U, Naldini L, Kafri T, et al. J. Virol., 1997, 71(9):6641-6649
       

    150. [150]

      Thomas C E, Ehrhardt A, Kay M A. Nat. Rev. Genet., 2003, 4(5):346-358  doi: 10.1038/nrg1066

    151. [151]

      Wang X Y, Deng Y Q, Shi H Y, et al. Small, 2010, 6(3):351-354  doi: 10.1002/smll.v6:3

    152. [152]

      Wang X Y, Deng Y Q, Li S H, et al. Adv. Healthcare Mater., 2012, 1(4):443-449  doi: 10.1002/adhm.201200034

    153. [153]

      Wang X Y, Sun C J, Li P C, et al. Adv. Mater., 2016, 28(4):694-700  doi: 10.1002/adma.201503740

    154. [154]

      Wang X Y, Deng Y Q, Yang D, et al. Chem. Sci., 2017, 8(12):8240-8246  doi: 10.1039/C7SC03868B

    155. [155]

      Wang X Y, Yang D, Li S H, et al. Biomaterials, 2016, 106:286-294  doi: 10.1016/j.biomaterials.2016.08.035

    156. [156]

      Zhou H Y, Wang G C, Wang X Y, et al. Angew. Chem. Int. Ed., 2017, 56(42):12908-12912

    157. [157]

      Shao C P. N. Engl. J. Med., 2010, 362(5):472-473  doi: 10.1056/NEJMc0909552

    158. [158]

      Torre L A, Siegel R L, Ward E M, et al. Cancer Epidem. Biomar., 2016, 25(1):16-27  doi: 10.1158/1055-9965.EPI-15-0578

    159. [159]

      Siegel R L, Miller K D, Jemal A. CA:Cancer J. Clin., 2015, 65(1):5-29  doi: 10.3322/caac.21254

    160. [160]

      Ahles T A, Saykin A J. Nat. Rev. Cancer, 2007, 7(3):192-201  doi: 10.1038/nrc2073

    161. [161]

      Noordman B J, Van Lanschot J J B. Nat. Rev. Clin. Oncol., 2015, 12(6):315-316  doi: 10.1038/nrclinonc.2015.91

    162. [162]

      Nelson H, Sargent D J, Wieand H S, et al. N. Engl. J. Med., 2004, 350(20):2050-2059  doi: 10.1056/NEJMoa032651

    163. [163]

      Naredi P, La Quaglia M P. Nat. Rev. Clin. Oncol., 2015, 12(7):425-431  doi: 10.1038/nrclinonc.2015.72

    164. [164]

      Allen T M, Cullis P R. Science, 2004, 303(5665):1818-1822  doi: 10.1126/science.1095833

    165. [165]

      Peer D, Karp J M, Hong S, et al. Nat. Nanotechnol., 2007, 2(12):751-760  doi: 10.1038/nnano.2007.387

    166. [166]

      Nel A, Xia T, Mdler L, et al. Science, 2006, 311(5761):622-627  doi: 10.1126/science.1114397

    167. [167]

      Brannon-Peppas L, Blanchette J O. Adv. Drug Delivery Rev., 2012, 64:206-212  doi: 10.1016/j.addr.2012.09.033

    168. [168]

      Sharifi S, Behzadi S, Laurent S, et al. Chem. Soc. Rev., 2012, 41(6):2323-2343  doi: 10.1039/C1CS15188F

    169. [169]

      Low P S, Henne W A, Doorneweerd D D. Acc. Chem. Res., 2007, 41(1):120-129

    170. [170]

      He W, Wang H, Hartmann L C, et al. Proc. Natl. Acad. Sci. U.S.A., 2007, 104(28):11760-11765  doi: 10.1073/pnas.0703875104

    171. [171]

      Klibanov A M. Science, 1983, 219(4585):722-727  doi: 10.1126/science.219.4585.722

    172. [172]

      Schmid A, Dordick J S, Hauer B, et al. Nature, 2001, 409(6817):258-268  doi: 10.1038/35051736

    173. [173]

      Leon R, Fernandes P, Pinheiro H M, et al. Enzyme Microb. Technol., 1998, 23(7/8):483-500
       

    174. [174]

      Pfruender H, Amidjojo M, Kragl U, et al. Angew. Chem. Int. Ed., 2004, 43(34):4529-4531  doi: 10.1002/(ISSN)1521-3773

    175. [175]

      Chen Z W, Ji H W, Zhao C Q, et al. Angew. Chem. Int. Ed., 2015, 54(16):4904-4908  doi: 10.1002/anie.201412049

    176. [176]

      Crossley S, Faria J, Shen M, et al. Science, 2010, 327(5961):68-72  doi: 10.1126/science.1180769

    177. [177]

      Zapata P A, Faria J, Ruiz M P, et al. J. Am. Chem. Soc., 2012, 134(20):8570-8578  doi: 10.1021/ja3015082

    178. [178]

      Zhou W J, Fang L, Fan Z Y, et al. J. Am. Chem. Soc., 2014, 136(13):4869-4872  doi: 10.1021/ja501019n

    179. [179]

      Zhang W J, Fu L M, Yang H Q. ChemSusChem, 2014, 7(2):391-396  doi: 10.1002/cssc.201301001

    180. [180]

      Li W, Liu Z, Liu C Q, et al. Angew. Chem. Int. Ed., 2017, 56(44):13661-13665  doi: 10.1002/anie.201706910

    181. [181]

      Ragauskas A J, Williams C K, Davison B H, et al. Science, 2006, 311(5760):484-489  doi: 10.1126/science.1114736

    182. [182]

      Wijffels R H, Barbosa M J. Science, 2010, 329(5993):796-799  doi: 10.1126/science.1189003

    183. [183]

      Turner J A. Science, 1999, 285(5428):687-689  doi: 10.1126/science.285.5428.687

    184. [184]

      Bartels J R, Pate M B, Olson N K. Int. J. Hydrogen Energy, 2010, 35(16):8371-8384  doi: 10.1016/j.ijhydene.2010.04.035

    185. [185]

      Burgess S J, Tamburic B, Zemichael F, et al. Adv. Appl. Microbiol., 2011, 75:71-110
       

    186. [186]

      Hemschemeier A, Happe T. BBA Bioenergetics, 2011, 1807(8):919-926  doi: 10.1016/j.bbabio.2011.02.010

    187. [187]

      Grewe S, Ballottari M, Alcocer M, et al. Plant Cell, 2014, 26(4):1598-1611  doi: 10.1105/tpc.114.124198

    188. [188]

      Gaffron H, Rubin J. J. Gen. Physiol., 1942, 26(2):219-240  doi: 10.1085/jgp.26.2.219

    189. [189]

      Stripp S T, Goldet G, Brandmayr C, et al. Proc. Natl. Acad. Sci. U.S.A., 2009, 106(41):17331-17336  doi: 10.1073/pnas.0905343106

    190. [190]

      Melis A, Zhang L, Forestier M, et al. Plant Physiol., 2000, 122(1):127-136  doi: 10.1104/pp.122.1.127

    191. [191]

      Ghirardi M L, Zhang L, Lee J W, et al. Trends Biotechnol., 2000, 18(12):506-511  doi: 10.1016/S0167-7799(00)01511-0

    192. [192]

      Eroglu E, Melis A. Bioresour. Technol., 2011, 102(18):8403-8413
       

    193. [193]

      Lesseps R J. Science, 1965, 148(3669):502-503  doi: 10.1126/science.148.3669.502

    194. [194]

      Humphreys T. Nature, 1970, 228(5272):685-686  doi: 10.1038/228685a0

    195. [195]

      Gregor T, Fujimoto K, Masaki N, et al. Science, 2010, 328(5981):1021-1025  doi: 10.1126/science.1183415

    196. [196]

      Discher D E, Janmey P, Wang Y. Science, 2005, 310(5751):1139-1143  doi: 10.1126/science.1116995

    197. [197]

      Lewis N S. Science, 2016, 351(6271):aad1920  doi: 10.1126/science.aad1920

    198. [198]

      Luo W J, Yang Z S, Li Z S, et al. Energy Environ. Sci., 2011, 4(10):4046-4051  doi: 10.1039/c1ee01812d

    199. [199]

      Li Z S, Luo W J, Zhang M L, et al. Energy Environ. Sci., 2013, 6(2):347-370  doi: 10.1039/C2EE22618A

    200. [200]

      Fujishima A, Honda K. Nature, 1972, 238(5358):37-38  doi: 10.1038/238037a0

    201. [201]

      Zou Z G, Ye J H, Sayama K, et al. Nature, 2001, 414(6864):625-627  doi: 10.1038/414625a

    202. [202]

      Meyer T J. Acc. Chem. Res., 1989, 22(5):163-170  doi: 10.1021/ar00161a001

    203. [203]

      Appel A M, Bercaw J E, Bocarsly A B, et al. Chem. Rev., 2013, 113(8):6621-6658  doi: 10.1021/cr300463y

    204. [204]

      Tu W, Zhou Y, Zou Z. Adv. Mater., 2014, 26(27):4607-4626  doi: 10.1002/adma.v26.27

    205. [205]

      Larkum A W D. Curr. Opin. Biotechnol., 2010, 21(3):271-276  doi: 10.1016/j.copbio.2010.03.004

    206. [206]

      Hawkins A S, McTernan P M, Lian H, et al. Curr. Opin. Biotechnol., 2013, 24(3):376-384  doi: 10.1016/j.copbio.2013.02.017

    207. [207]

      Rasmussen B, Fletcher I R, Brocks J J, et al. Nature, 2008, 455(7216):1101-1104  doi: 10.1038/nature07381

    208. [208]

      Kump L R, Barley M E. Nature, 2007, 448(7157):1033-1036  doi: 10.1038/nature06058

    209. [209]

      Paerl H W, Huisman J. Science, 2008, 320(5872):57-58  doi: 10.1126/science.1155398

    210. [210]

      Cox P A, Banack S A, Murch S J. Proc. Natl. Acad. Sci. U.S.A., 2003, 100(23):13380-13383  doi: 10.1073/pnas.2235808100

    211. [211]

      Anderson D M, Glibert P M, Burkholder J M. Estuaries, 2002, 25(4):704-726  doi: 10.1007/BF02804901

    212. [212]

      Smayda T J. Limnol. Oceanogr., 1997, 42(5):1137-1153

    213. [213]

      Funari E, Testai E. Crit. Rev. Toxicol., 2008, 38(2):97-125  doi: 10.1080/10408440701749454

    214. [214]

      Qin B Q, Zhu G W, Gao G, et al. Environ. Manage., 2010, 45(1):105-112
       

    215. [215]

      Dixon M B, Richard Y, Ho L, et al. Water Sci. Technol., 2011, 63(7):1405-1411  doi: 10.2166/wst.2011.318

    216. [216]

      Chow C W K, Drikas M, House J, et al. Water Res., 1999, 33(15):3253-3262  doi: 10.1016/S0043-1354(99)00051-2

    217. [217]

      ZHANG Hong, FAN Ying-Hua. Green Living, 2013(2):28-33
       

    218. [218]

      HU Bi-Yang, ZHAO Lei, ZHOU Wen-Jing, et al. Doctoral Dissertation, 2012, 33(3):138-143
       

    219. [219]

      Kardinaal W E A, Visser P M. Dynamics of Cyanobacterial Toxins:Harmful Cyanobacteria Aquatic Ecology Series. Dordrecht:Springer, 2005:41-64

    220. [220]

      Granéli E. Ecology of Harmful Algae. Berlin:Springer, 2006:189-201

    221. [221]

      Chorus I, Bartram J. Toxic Cyanobacteria in Water:A Guide to Their Public Health Consequences, Monitoring and Mana-gement. Boca Raton:CRC Press, 1999.

    222. [222]

      Hildebrand M. Chem. Rev., 2008, 108(11):4855-4874  doi: 10.1021/cr078253z

    223. [223]

      Villareal T A. Deep Sea Res. Part A, 1988, 35(6):1037-1045  doi: 10.1016/0198-0149(88)90075-1

  • 加载中
    1. [1]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    2. [2]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    5. [5]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    6. [6]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    7. [7]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    8. [8]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    9. [9]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    10. [10]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    11. [11]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    12. [12]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    13. [13]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    14. [14]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    15. [15]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    16. [16]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    17. [17]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    18. [18]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    19. [19]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    20. [20]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

Metrics
  • PDF Downloads(32)
  • Abstract views(1856)
  • HTML views(433)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return