Citation: ZHANG Hai-Xia, HAN Wang-Kang, ZHANG Feng-Li, HE Wei, GE Fang-Yuan, WANG Ya-Qin, YAN Xiao-Dong, GU Zhi-Guo. Halide Triggered Spin State Switching of Iron(Ⅱ) Tetrahedral Cages[J]. Chinese Journal of Inorganic Chemistry, ;2018, 34(11): 2063-2072. doi: 10.11862/CJIC.2018.233 shu

Halide Triggered Spin State Switching of Iron(Ⅱ) Tetrahedral Cages

Figures(6)

  • Three iron(Ⅱ) tetrahedral cages 1~3 with solid state spin-crossover properties were rational constructed.Single crystal X-ray diffraction analysis confirmed the edge-capped capsule, which were assembled from six imidazole Schiff-base ligands and four iron(Ⅱ) ions.The metal centers occupy the vertices and each linker situates at the edges of the tetrahedron.The inner cavities of these cages are surrounded by imidazole groups, while the periphery is decorated by substituted phenyl rings.One of the counter anions is encapsulated at the central cavities and shows strong anion binding interactions with the cages.Interestingly, the iron(Ⅱ) cages in solution can change their spin states from low-spin (LS) to high-spin (HS) upon addition of halide, since tremendous change of solution color and absorption intensity of characteristic broad absorption MLCT bands when addition of halide (Cl- and Br-) to the CH3CN solution of the cages.
  • 加载中
    1. [1]

    2. [2]

      (a) Khusniyarov M M.Chem. Eur. J., 2016, 22: 15178-15191
      (b)Guionneau P.Dalton. Trans., 2014, 43: 382-393
      (c)Kahn O, Martinez C J.Scienc., 1998, 279: 44-48
      (d)Rosner B, Milek M, Witt A, et al.Angew. Chem. Int. Ed., 2015, 54: 12976-12980
      (e)Zenere K A, Duyker S G, Trzop E, et al.Chem. Sci., 2018, 9(25): 5623-5629

    3. [3]

      (a) Samanta S, Demesko S, Dechert S, et al.Angew. Chem. Int. Ed., 2015, 54: 583-587
      (b)Dommaschk M, Schutt C, Venkataramani S, et al.Dalton. Trans., 2014, 43: 17395-17405

    4. [4]

      (a) Shores M P, Klug C M, Fiedler S R.Spin-Crossover Materials: Properties and Applications. Halcrow M A Ed., Oxford: Wiley-Blackwel., 2013: 281-301
      (b)Weber B, Walker F A.Inorg. Chem., 2007, 46: 6794-6803

    5. [5]

      (a) Hasegawa Y, Kume S, Nishihara H.Dalton. Trans., 2009, 2: 280-284
      (b)Heitmann G, Schütt C, Herges R.Eur. J. Org. Chem., 2016, 22: 3817-3823
      (c)Venkataramani S, Jana U, Dommaschk M, et al.Scienc., 2011, 331: 445-448
      (d)Thies S, Sell H, Schütt C, et al.J. Am. Chem. Soc., 2011, 133: 16243-16250

    6. [6]

      (a) Schmitz M, Seibel M, Kelm H, et al.Angew. Chem. Int. Ed., 2014, 53: 5988-5992
      (b)Wilson R K, Brooker S.Dalton. Trans., 2013, 42: 12075-12078
      (c)Miller J S, Min K S.Angew. Chem. Int. Ed., 2009, 48: 262-272

    7. [7]

      (a) Young M C, Liew E, Ashby J, et al.Chem. Commun., 2013, 49: 6331-6333
      (b)Ono K, Yoshizawa M, Akita M, et al.J. Am. Chem. Soc., 2009, 131: 2782-2783
      (c)Ni Z, Shores M P.J. Am. Chem. Soc., 2009, 131: 32-33
      (d)Ni Z, McDaniel A M, Shores M P.Chem. Sci., 2010, 1: 615-621
      (e)Ni Z, Shores M P.Inorg. Chem., 2010, 49: 10727-10735

    8. [8]

      (a) Rissanen K.Chem. Soc. Rev., 2017, 46: 2638-2648
      (b)Zarra S, Wood D M, Roberts D A, et al.Chem. Soc. Rev., 2015, 44: 419-432
      (c)Ahmad N, Younus HA, Chughtai A H, et al.Chem. Soc. Rev., 2015, 44: 9-25
      (d)Ramsay W J, Ronson T K, Clegg J K, et al.Angew. Chem. Int. Ed., 2013, 52: 13439-13443
      (e)Ward M D, Hunter C A, Williams N H.Chem. Lett., 2017, 46: 2-9
      (f)Metherell A J, Cullen W, Williams N H, et al.Chem. Eur. J., 2018, 24: 1554-1560

    9. [9]

      (a) Struch N, Bannwarth C, Ronson T K, et al.Angew. Chem. Int. Ed., 2017, 56: 4930-4935
      (b)Bilbeisi R A, Zarra S, Feltham H L, et al.Chem. Eur. J., 2013, 19: 8058-8062

    10. [10]

      (a) Ren D H, Qiu D, Pang C Y, et al.Chem. Commun., 2015, 51: 788-791
      (b)Zhang F L, Chen Q J, Qin L F, et al.Chem. Commun., 2016, 52: 4796-4799

    11. [11]

      SAINT-Plus, Version 6.02, Bruker Analytical X-ray System, Madison, WI, 1999.

    12. [12]

      Sheldrick G M.SADABS, Bruker Analytical X-ray Systems, Madison, WI, 1996.

    13. [13]

      Sheldrick G M.SHELXTL-97, University of G?ttingen, G?ttingen, Germany, 1997.

    14. [14]

      van der Sluis P, Spek A L. Acta Crystallogr. Sect. A:Found. Crystallogr., 1990, A46:194-201
       

    15. [15]

      Spek A L. Acta Crystallogr. Sect. D:Biol. Crystallogr., 2009, D65:148-155

    16. [16]

      Brooker S. Chem. Soc. Rev., 2015, 44:2880-2892  doi: 10.1039/C4CS00376D

    17. [17]

      Paul R L, Argent S P, Jeffery J C, et al. Dalton. Trans., 2004, 21:3453-3458

    18. [18]

      (a) Vostrikova K E, Luneau D, Wemsdorfer W, et al.J. Am. Chem. Soc., 2000, 122: 718-719
      (b)Liu Y C, Hua S A, Cheng M C, et al.Chem. Eur. J., DOI: 10.1002/chem.201801325

    19. [19]

      (a) Luo Y H, Nihei M, Wen G J, et al.Inorg. Chem., 2016, 55: 8147-8152
      (b)Nemec I, Herchel R, Travnicek Z.Dalton. Trans., 2015, 44: 4474-4484

    20. [20]

      Darawsheh M, Barrios L A, Roubeau O, et al. Chem. Eur. J., 2016, 22:8635-8645  doi: 10.1002/chem.v22.25

    21. [21]

      Mooibroek T J, Gamez P. CrystEngComm, 2013, 15:1802-1805  doi: 10.1039/c2ce26853a

  • 加载中
    1. [1]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    2. [2]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    3. [3]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    4. [4]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    5. [5]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    6. [6]

      Jiajing Wu Ru-Ling Tang Sheng-Ping Guo . Three types of promising functional building units for designing metal halide nonlinear optical crystals. Chinese Journal of Structural Chemistry, 2024, 43(6): 100291-100291. doi: 10.1016/j.cjsc.2024.100291

    7. [7]

      Jiayuan Liang Xin Mi Songhao Guo Hui Luo Kejun Bu Tonghuan Fu Menglin Duan Yang Wang Qingyang Hu Rengen Xiong Peng Qin Fuqiang Huang Xujie Lü . Pressure-induced emission in 0D metal halide (EATMP)SbBr5 by regulating exciton-phonon coupling. Chinese Journal of Structural Chemistry, 2024, 43(7): 100333-100333. doi: 10.1016/j.cjsc.2024.100333

    8. [8]

      Bingbing ShiYuchun WangYi ZhouXing-Xing ZhaoYizhou LiNuoqian YanWen-Juan QuQi LinTai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540

    9. [9]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    10. [10]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    11. [11]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    12. [12]

      Zhaohong ChenMengzhen LiJinfei LanShengqian HuXiaogang Chen . Organic ferroelastic enantiomers with high Tc and large dielectric switching ratio triggered by order-disorder and displacive phase transition. Chinese Chemical Letters, 2024, 35(10): 109548-. doi: 10.1016/j.cclet.2024.109548

    13. [13]

      Pan LiuYanming SunAlberto J. Fernández-CarriónBowen ZhangHui FuLunhua HeXing MingCongling YinXiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641

    14. [14]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    15. [15]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    16. [16]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    17. [17]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    18. [18]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    19. [19]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    20. [20]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

Metrics
  • PDF Downloads(1)
  • Abstract views(342)
  • HTML views(64)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return