Citation: LI Hui-Hua, GE You, ZHU Hong-Li, FENG Xiao-Miao, LIU Yu-Ge. Preparation by Electro-Deposition Method and Application in Flexible All-Solid-State Supercapacitors of Poly(3, 4-ethylenedioxythiophene) Microtubes[J]. Chinese Journal of Inorganic Chemistry, ;2018, 34(10): 1799-1807. doi: 10.11862/CJIC.2018.231 shu

Preparation by Electro-Deposition Method and Application in Flexible All-Solid-State Supercapacitors of Poly(3, 4-ethylenedioxythiophene) Microtubes

Figures(8)

  • Poly(3, 4-ethylenedioxythiophene) (PEDOT) microtube electrodes doped with different acids and surfactants were obtained by one-step electrochemical deposition method and could be used for flexible and all-solid-state supercapacitors (SCs). We also investigated the effect of deposition time on the capacitance performance of PEDOT microtubes doped with the same acid medium and surfactant. The structures of the final product were characterized by different characterization techniques including scanning electron microscopy (SEM) and FT-IR spectra. The electrochemical results showed that the capacitance of PEDOT microtubes doped with sulfuric acid (H2SO4) and sodium dodecyl sulfate (SDS) could be improved significantly. The areal capacitance of the prepared supercapacitor with deposition time of 600 s could achieve to 113.5 mF·cm-2 at the scan rate of 10 mV·s-1. The areal capacitances under the different bending angles remained at 93% of initial capacitive value revealing that the supercapacitor had highly mechanical stability. In addition, it remained 95.5% of the initial capacitive value after 2 000 cycles at a current density of 0.6 mA·cm-2 showing its superior cycling stability. The prepared flexible all-solid-state supercapacitor can power a light-emitting-diode (LED) which meets the practical applications of micro-power supplies.
  • 加载中
    1. [1]

      Aricò A S, Bruce P, Scrosati B, et al. Nat. Mater., 2005, 4(5):366-377  doi: 10.1038/nmat1368

    2. [2]

      Lu Q Q, Wang X Y, Cao J, et al. Energy Storage Mater., 2017, 8:77-84  doi: 10.1016/j.ensm.2017.05.001

    3. [3]

      Simon P, Gogotsi Y. Nat. Mater., 2008, 7(11):845-854  doi: 10.1038/nmat2297

    4. [4]

      Miller J R, Simon P. Science, 2008, 321(5889):651-652  doi: 10.1126/science.1158736

    5. [5]

      Pushparaj V L, Shaijumon M M, Kumar A, et al. Proc. Natl.Acad. Sci., 2007, 104(34):13574-13577  doi: 10.1073/pnas.0706508104

    6. [6]

      Shi S, Xu C J, Yang C, et al. Sci. Rep., 2013, 3:2598-2604  doi: 10.1038/srep02598

    7. [7]

      Chen T, Dai L M. J. Mater. Chem. A, 2014, 2(28):10756-10775  doi: 10.1039/c4ta00567h

    8. [8]

      D′Arcy J M, El-Kady M F, Khine P P, et al. ACS Nano, 2014, 8(2):1500-1510  doi: 10.1021/nn405595r

    9. [9]

      Österholm A M, Shen D E, Dyer A L, et al. ACS Appl. Mater.Interfaces, 2013, 5(24):13432-13440  doi: 10.1021/am4043454

    10. [10]

      Pandey G, Rastogi A, Westgate C R. J. Power Sources, 2014, 245:857-865  doi: 10.1016/j.jpowsour.2013.07.017

    11. [11]

      Hsu Y K, Chen Y C, Lin Y G, et al. J. Power Sources, 2013, 242:718-724  doi: 10.1016/j.jpowsour.2013.05.153

    12. [12]

      Tsakova V, Winkels S, Schultze J. Electrochim. Acta, 2001, 46(5):759-768  doi: 10.1016/S0013-4686(00)00643-5

    13. [13]

      Patra S, Munichandraiah N. J. Appl. Polym. Sci., 2007, 106(2):1160-1171  doi: 10.1002/(ISSN)1097-4628

    14. [14]

      Li W K, Chen J, Zhao J J, et al. Mater. Lett., 2005, 59:800-803  doi: 10.1016/j.matlet.2004.11.024

    15. [15]

      Anothumakkool B, Bhange S N, Badiger M V, et al.Nanoscale, 2014, 6(11):5944-5952  doi: 10.1039/c4nr00659c

    16. [16]

      Wang Z L, He X J, Ye S H, et al. ACS Appl. Mater.Interfaces, 2014, 6(1):642-647  doi: 10.1021/am404751k

    17. [17]

      Selvaganesh S V, Mathiyarasu J, Phani K L N, et al.Nanoscale Res. Lett., 2007, 2(11):546-549  doi: 10.1007/s11671-007-9100-6

    18. [18]

      Xu H H, Hu X L, Sun Y M, et al. Nano Res., 2014, 8(4):1148-1158

    19. [19]

      Chen Y Q, Zhang X N, Xie Z P. ACS Nano, 2015, 9(8):8054-8063  doi: 10.1021/acsnano.5b01784

    20. [20]

      Chen S, Zhu J W, Wang X. ACS Nano, 2010, 4(10):6212-6218  doi: 10.1021/nn101857y

    21. [21]

      Wu L X, Li R Z, Guo J L, et al. AIP Adv., 2013, 3(8):082129-082133  doi: 10.1063/1.4820353

    22. [22]

      Chen W, Rakhi R B, Hu L B, et al. Nano Lett., 2011, 11(12):5165-5172  doi: 10.1021/nl2023433

    23. [23]

      Hu H B, Zhang K, Li S X, et al. J. Mater. Chem. A, 2014, 2(48):20916-20922  doi: 10.1039/C4TA05345A

    24. [24]

      Zhao J, Lai H W, Lyu Z Y, et al. Adv. Mater., 2015, 27(23):3541-3545  doi: 10.1002/adma.v27.23

    25. [25]

      Xie Y B, Du H X, Xia C. Microporous Mesoporous Mater., 2015, 204:163-172  doi: 10.1016/j.micromeso.2014.11.021

    26. [26]

      Yang H L, Xu H H, Li M, et al. ACS Appl. Mater. Interfaces, 2016, 8(3):1774-1779  doi: 10.1021/acsami.5b09526

    27. [27]

      Sun J F, Huang Y, Fu C X, et al. J. Mater. Chem. A, 2016, 4(38):14877-14883  doi: 10.1039/C6TA05898A

    28. [28]

      Lee J A, Shin M K, Kim S H, et al. Nat. Commun., 2013, 4:1970-1977  doi: 10.1038/ncomms2970

  • 加载中
    1. [1]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    2. [2]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    3. [3]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    4. [4]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    5. [5]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    6. [6]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    7. [7]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    8. [8]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

Metrics
  • PDF Downloads(10)
  • Abstract views(2003)
  • HTML views(327)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return