Citation: GUO Bing-Lin, HOU Cai-Xia, FAN Li-Hua, SUN Zhang. Effect of Extraction Temperature on Hyper-coal Structure and Electrochemistry of Coal-Based Activated Carbon[J]. Chinese Journal of Inorganic Chemistry, ;2018, 34(9): 1615-1624. doi: 10.11862/CJIC.2018.201 shu

Effect of Extraction Temperature on Hyper-coal Structure and Electrochemistry of Coal-Based Activated Carbon

  • Corresponding author: HOU Cai-Xia, caixiasmile@163.com
  • Received Date: 16 April 2018
    Revised Date: 14 June 2018

Figures(13)

  • The Inner Mongolia lignite was used to prepare hyper-coal(HPC) at different temperatures by N-methylpyrolidone during KOH extraction. To explore the effect of extraction temperatures on activated carbons(ACs), the activation was operated at the same condition, mKOH:mcoal=3:1 and activated at 650℃ for 2 hours. The results show that the extraction temperature of HPC has great effect on the electrochemical properties of HPC-based ACs. Comparing the ash contents, surface oxo-functional groups, the specific surface areas, pore structures and electrochemical performances of the corresponding ACs with the lignite, the HPC prepared at 330℃ is in possession of the most suitable reactivity and its specific surface area of corresponding ACs could reach 1 252 m2·g-1 with appropriate amount of surface oxo-function groups. Besides, the specific capacitor could still retain almost 90% in 3 mol·L-1 KOH electrolyte at 50 mA·g-1 reaching 322 F·g-1, and a capacity retention as high as near 90% was achieved at 2 000 mA·g-1.
  • 加载中
    1. [1]

      Jing M J, Hou H S, Yang Y C, et al. Electrochimi. Acta, 2015, 165:198-205  doi: 10.1016/j.electacta.2015.03.032

    2. [2]

      JIAO Chen, ZHANG Wei-Ke, SU Fang-Yuan, et al. New Carbon Materials, 2017, 32(2):106-115
       

    3. [3]

      Meng X Y, Cao Q, Jin L E, et al. J. Mater. Sci., 2016, 52(2):760-769
       

    4. [4]

      Jiang L, Yan J W, Hao L X, et al. Carbon, 2013, 56(56):146-154
       

    5. [5]

      Zhang J B, Jin L J, Cheng J, et al. Carbon, 2013, 55(2):221-232
       

    6. [6]

      Xing B L, Huang G X, Chen L J, et al. J. Porous Mater., 2015, 23(1):67-73
       

    7. [7]

      Li Y F, Liu Y Z, Zhang W K, et al. Mater. Lett., 2015, 157:273-276  doi: 10.1016/j.matlet.2015.05.114

    8. [8]

      Zhong C G, Gong S L, Jin L E, et al. Mater. Lett., 2015, 156:1-6  doi: 10.1016/j.matlet.2015.04.127

    9. [9]

      Teng H, Lin H C. AIChE J., 1998, 44(5):1170-1177  doi: 10.1002/(ISSN)1547-5905

    10. [10]

      Gao F, Han L, Li K X. J. Chem. Soc. Pak., 2013, 35(2):325-329

    11. [11]

      FAN Li-Hua, WANG Xiao-Liu, HOU Cai-Xia, et al. Functional Materials, 2017, 48(1):1244-1248
       

    12. [12]

      Salinas-Torres D, Shiraishi S, Morallón E, et al. Carbon, 2015, 82:205-213  doi: 10.1016/j.carbon.2014.10.064

    13. [13]

      Yoshida T, Takanohashi T, Sakanishi K, et al. Fuel, 2002, 81(11/12):1463-1469
       

    14. [14]

      Okuyama N, Komatsu N, Shigehisa T, et al. Fuel Process. Technol., 2004, 85(8):947-967
       

    15. [15]

      HUANG Shan-Shan, ZHAO Xiao-Yan, XIE Feng-Mei, et al. Journal of Fuel Chemistry and Technology, 2014, 42(5):539-544
       

    16. [16]

      YUAN Ming, LIN Hua-Lin, LI Ke-Jian. Clean Coal Technology, 2013, 19(2):42-46
       

    17. [17]

      ZHANG Ke, YAO Su-Ping, HU Wen-Xuan, et al. Coalfield Geology and Exploration, 2009, 37(6):8-13  doi: 10.3969/j.issn.1001-1986.2009.06.003

    18. [18]

      Supaluknari S, Larkins F P, Redlich P, et al. Fuel Process. Technol., 1988, 19(2):123-140  doi: 10.1016/0378-3820(88)90061-6

    19. [19]

      Ibarra J, Muñoz E, Moliner R. Org. Geochem., 1996, 24(6):725-735

    20. [20]

      LI Xiang, QIN Zhi-Hong, BU Liang-Hui, et al. Journal of Fuel Chemistry and Technology, 2016, 44(4):385-393  doi: 10.3969/j.issn.0253-2409.2016.04.001

    21. [21]

      XING Bao-Lin, CHEN Lun-Jian, ZHANG Chuan-Xiang, et al. Journal of China University of Mining and Technology, 2014, 43(6):1038-1045
       

    22. [22]

      XING Wei, ZHANG Ming-Jie, YAN Zi-Feng. Acta Phys.-Chim. Sin., 2002, 18(4):340-345  doi: 10.3866/PKU.WHXB20020411

    23. [23]

      CHEN Jin-Fu, LI Xing-Cun, LI Shu-Yuan. Journal of Fuel Chemistry and Technology, 2004, 32(1):54-58  doi: 10.3969/j.issn.0253-2409.2004.01.011

    24. [24]

      Lillo-Ródenas M A, Cazorla-Amorós D, Linares-Solano A. Carbon, 2003, 41(2):267-275  doi: 10.1016/S0008-6223(02)00279-8

    25. [25]

      Schafer H N S. Fuel, 1979, 58(9):673-679
       

    26. [26]

      Han F, Meng A, Li Q, et al. J. Energy Inst., 2016, 89(1):94-100  doi: 10.1016/j.joei.2015.01.007

    27. [27]

      Miura K, Mae K, Li W, et al. Energy Fuels, 2001, 15(3):599-610  doi: 10.1021/ef0001787

    28. [28]

      Shi L, Liu Q, Guo X, et al. Fuel Process. Technol., 2013, 108(6):125-132
       

    29. [29]

      Sing K S W. Pure Appl. Chem., 1985, 57(4):603-619  doi: 10.1351/pac198557040603

    30. [30]

      Alhamed Y A, Bamufleh H S. Fuel, 2009, 88(1):87-94  doi: 10.1016/j.fuel.2008.07.019

    31. [31]

      Liu C, Sun Y, Wang D, et al. Ultrason. Sonochem., 2017, 34:142-153  doi: 10.1016/j.ultsonch.2016.05.036

    32. [32]

      Ruiz V, Blanco C, Santamaría R, et al. Microporous Mesoporous Mater., 2008, 110(2):431-435
       

    33. [33]

      Soffer A, Folman M. J. Electroanal. Chem. Interfacial Electrochem., 1972, 38(1):25-43  doi: 10.1016/S0022-0728(72)80087-1

    34. [34]

      Koresh J, Soffer A. J. Electroanal. Chem. Interfacial Electrochem., 1983, 147(1):223-234

    35. [35]

      LIU Zhen-Yu, ZHENG Jing-Tang, WANG Mao-Zhang. Ion Exchange and Adsorption, 1997(4):353-358  doi: 10.3321/j.issn:1001-5493.1997.04.004

    36. [36]

      Hulicova-Jurcakova D, Seredych M, Lu G Q, et al. Adv. Funct. Mater., 2009, 19(3), 438-447  doi: 10.1002/adfm.v19:3

    37. [37]

      Frackowiak E. Phys. Chem. Chem. Phys., 2007, 9(15):1774-1785  doi: 10.1039/b618139m

    38. [38]

      Koresh J, Soffer A. J. Electrochem. Soc., 1977, 124(9):1379-1385  doi: 10.1149/1.2133657

    39. [39]

      McCreery R L, Cline K K, McDermott C A, et al. Colloids Surf. A, 1994, 93(94):211-219
       

    40. [40]

      Shafeeyan M S, Daud W M A W, Houshmand A, et al. J. Anal. Appl. Pyrolysis, 2010, 89(2):143-151  doi: 10.1016/j.jaap.2010.07.006

    41. [41]

      Shen W, Li Z, Liu Y. Recent Pat. Chem. Eng., 2008, 1(1):27-40  doi: 10.2174/2211334710801010027

    42. [42]

      Su W, Zhou Y P, Wei L F, et al. New Carbon Mater., 2007, 22(2):135-140  doi: 10.1016/S1872-5805(07)60014-6

    43. [43]

      Huang G, Kang W, Xing B, et al. Fuel Process. Technol., 2016, 142:1-5  doi: 10.1016/j.fuproc.2015.09.025

    44. [44]

      Xie Y B, Qiao W M, Zhang W Y, et al. New Carbon Mater., 2010, 25(4):248-254  doi: 10.1016/S1872-5805(09)60031-7

    45. [45]

      LI Dao-Yan, ZHANG Ji-Chen, WANG Zhi -Yong. Acta Phys.-Chim. Sin., 2017, 33(11):2245-2252  doi: 10.3866/PKU.WHXB201705241

    46. [46]

      Nian Y R, Teng H. J. Electroanal. Chem., 2003, 540(2):119-127
       

    47. [47]

      Liu X M, Li J, Zhan L, et al. J. Electroanal. Chem., 2010, 642(1):75-81  doi: 10.1016/j.jelechem.2010.02.008

  • 加载中
    1. [1]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    2. [2]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    3. [3]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    4. [4]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    5. [5]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    6. [6]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    7. [7]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    8. [8]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    9. [9]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    10. [10]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    11. [11]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    12. [12]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    13. [13]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

Metrics
  • PDF Downloads(8)
  • Abstract views(523)
  • HTML views(74)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return