Citation: XIE Ming-Da, TIAN Xiao-Xia, QU Shao-Bo, CHENG Hua-Lei. Synthesis and Electromagnetic Properties of Porous Carbonyl Iron/SiO2/Polypyrrole Core-Shell Structure Composites[J]. Chinese Journal of Inorganic Chemistry, ;2018, 34(7): 1261-1270. doi: 10.11862/CJIC.2018.178 shu

Synthesis and Electromagnetic Properties of Porous Carbonyl Iron/SiO2/Polypyrrole Core-Shell Structure Composites

Figures(10)

  • Porous carbonyl iron powder(CIP) was obtained by means of point erosion and then porous carbonyl iron/SiO2/polypyrrole(porous-CIP/SiO2/PPy) composites were prepared by the Stöber process together with the in-situ polymerization. The phase structure and micro morphology of the composites were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscope(TEM), and Fourier transform infrared spectra(FT-IR). The electromagnetic parameters and microwave absorption properties were measured in 2.0~18.0 GHz by the coaxial method using network analyzer. The effect of the mass ratio of CIP/PPy on electromagnetic properties of the composites was investigated. The measured SEM and TEM show that the porous-CIP particles are firstly coated with SiO2 shell and then graft PPy to form core-shell structures. The absorption loss peak moves to lower frequency with increasing added amount of pyrrole. A minimum reflection loss (RL) of -23 dB and an effective bandwidth(RL below -10 dB) of 8.12 GHz in 9.44~17.56 GHz are obtained for coating thickness of 3.5 mm and 6%(w/w) pyrrole, which can be attributed to the effective impedance match and multiple interfacial polarizations. Owing to the low density and high absorption, the porous-CIP/SiO2/PPy composite can be a promising candidate as lightweight, efficient microwave absorbents.
  • 加载中
    1. [1]

      Barthet C, Armes S P, Lascelles S F, et al. Langmuir, 1998, 14:2032-2041  doi: 10.1021/la971064z

    2. [2]

      Ling Q C, Sun J Z, Zhao Q, et al. Mater. Sci. Eng. B, 2009, 162(3):162-166  doi: 10.1016/j.mseb.2009.03.023

    3. [3]

      Qing Y C, Zhou W C, Luo F, et al. J. Magn. Magn. Mater., 2009, 321:25-28  doi: 10.1016/j.jmmm.2008.07.011

    4. [4]

      Yu M, Yang P G, Fu J, et al. Appl. Phys. Lett., 2015, 106:161904-161910  doi: 10.1063/1.4919064

    5. [5]

      Kim J, Hong J, Lee K S. Electron. Mater. Lett., 2007, 3(3):169-175

    6. [6]

      TONG Guo-Xiu, WANG Wei, GUAN Jian-Guo, et al. J. Inorg. Mater., 2006, 21(6):1461-1466
       

    7. [7]

      Li J, Feng W J, Wang J S, et al. J. Magn. Magn. Mater., 2015, 393(11):82-87

    8. [8]

      Zhou Y Y, Xie H, Zhou W C, et al. J. Magn. Magn. Mater., 2018, 446(15):143-149
       

    9. [9]

      Kang Y, Huang Y, Yang R G, et al. J. Magn. Magn. Mater., 2016, 399(1):149-154

    10. [10]

      Maecki P, Kolman K, Pigowski J, et al. J. Solid State Chem., 2015, 226(3):224-230
       

    11. [11]

      Zhang W Q, Bie S W, Chen H C, et al. J. Magn. Magn. Mater., 2014, 358-359(3):1-4

    12. [12]

      GUO Fei, DU Hong-Liang, QU Shao-Bo, et al. Chinese J. Inorg. Chem., 2015, 31(4):755-760
       

    13. [13]

      Han R, Han X H, Tiao L, et al. Mater. Chem. Phys., 2011, 128(3):317-322  doi: 10.1016/j.matchemphys.2011.03.062

    14. [14]

      Ma Z, Zhang Y, Cao C, et al. Physica B:Condensed Matter, 2011, 406(24):4620-4624  doi: 10.1016/j.physb.2011.09.039

    15. [15]

      Qing Y C, Zhou W C, Luo F, et al. J. Magn. Magn. Mater., 2011, 323(5):600-606  doi: 10.1016/j.jmmm.2010.10.021

    16. [16]

      Ren X H, ChengY K. J. Magn. Magn. Mater., 2015, 393(3):293-296

    17. [17]

      Zhang J, Wang L X, Zhang Q T. J. Mater. Sci.-Mater. Electron., 2014, 25(12):5601-5605  doi: 10.1007/s10854-014-2349-5

    18. [18]

      Dong Y Z, Piao S H, Zhang K, et al. Colloids Surf., A, 2018, 537(20):102-108

    19. [19]

      Xiang J, Hou Z R, Zhang X K, et al. J. Alloys Compd., 2018, 737(3):412-420

    20. [20]

      Abdollah H, Ebrahim A L, Vahid A C, et al. J. Alloys Compd., 2018, 737(15):536-548

    21. [21]

      Jafarian M, Afghahi S S S, Atassi Y. et al. J. Magn. Magn. Mater., 2018, 462(9):153-159

    22. [22]

      Fan M, He Z F, Pang H. Synth. Met., 2013, 166(2):1-6
       

    23. [23]

      Sui M X, Lü X L, Xie A M. Synth. Met., 2015, 210(Part B):156-164

    24. [24]

      ZHAO Ting-Kai, ZHANG Hong-Yan, ZHU Ruo-Xing, et al. Rare Metal Materials and Enginee-ring, 2016, 45(8):2165-2168

    25. [25]

      Tong G X, Wu W H, Hua Q, et al. J. Alloys Compd., 2011, 509(2):451-456  doi: 10.1016/j.jallcom.2010.09.055

    26. [26]

      Yin C L, Cao Y B, Fan J M, et al. Appl. Surf. Sci., 2013, 270:432-438  doi: 10.1016/j.apsusc.2013.01.044

    27. [27]

      CHEN Yao-Yao, SHEN Jun-Hai, KONG Wei-Qiu, et al. Chinese J. Inorg. Chem., 2015, 31(2):243-252
       

    28. [28]

      DENG Lian-Wen, JIANG Jian-Jun, FENG Ze-Kun, et al. Acta Phys. Sin., 2014, 53(12):4359-4363
       

    29. [29]

      XI Li, ZHANG Zong-Zhi, CHI Jun-Hong, et al. Chin. Sci. Bull., 2000, 45(20):2163-2166  doi: 10.3321/j.issn:0023-074X.2000.20.006
       

  • 加载中
    1. [1]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    2. [2]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    3. [3]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    4. [4]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    5. [5]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    6. [6]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    7. [7]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    10. [10]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    11. [11]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    12. [12]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    13. [13]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    14. [14]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    15. [15]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    16. [16]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    17. [17]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    18. [18]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    19. [19]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    20. [20]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

Metrics
  • PDF Downloads(6)
  • Abstract views(1781)
  • HTML views(894)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return