Citation: HUANG Yun, MA Ruo-Nan, ZENG Xian-Zhe, XIANG Ming-Xue, CUI Xi-Jun, ZHANG Ping. Preparation by Using Soft Template and Adsorption Properties of Three-Dimensional Flower-like MgAl-LDH[J]. Chinese Journal of Inorganic Chemistry, ;2018, 34(5): 925-932. doi: 10.11862/CJIC.2018.132 shu

Preparation by Using Soft Template and Adsorption Properties of Three-Dimensional Flower-like MgAl-LDH

  • Corresponding author: ZHANG Ping, zhangping@ncu.edu.cn
  • Received Date: 4 January 2018
    Revised Date: 21 March 2018

Figures(10)

  • Three-dimensional flower-like LDH (3D-MgAl LDH) microspheres were successfully synthesized via hydrothermal method. The sodium dodecylsulfate was used as soft template. The effect of Mg/Al mole ratio, the concentration of SDS and the reaction time on the crystallinity, composition and morphology of 3D-MgAl LDH were investigated by XRD, FT-IR, SEM and TEM. The results show that the optimal condition for uniform 3D-MgAl LDH microspheres with high crystallinity, regular flower-like morphology and thickness uniformity of nanosheets are as follows, nMg/nAl=2, the concentration of SDS was 0.1 mol·L-1, and reaction time of 6 h. In addition, the growth mechanism of 3D-MgAl LDH was also inferred, SDS was used for intercalated anion to form LDH as well as could form micelles that bond to the outside surfaces and plate edges of LDH, which induced LDH nanosheet cross-growth. Finally, the adsorption activity present that 3D-MgAl LDH exhibits great adsorption capacity of ca. 30 mg·g-1 for naphthalene and the removal rate of 100%.
  • 加载中
    1. [1]

      Zou Y D, Wang P Y, Yao W, et al. Chem. Eng. J., 2017, 330:573-584

    2. [2]

      Valente J S, Pfeiffer H, Lima E, et al. J. Catal., 2011, 279(1):196-204

    3. [3]

      Li D L, Lu M M, Cai Y B, et al. Appl. Clay Sci., 2016, 132-133:243-250

    4. [4]

      Zhang K, Wang W H, Kuai L, et al. Electrochim. Acta, 2017, 225:303-309

    5. [5]

      Sun Z Y, Jin L, Shi W Y, et al. Chem. Eng. J., 2010, 161(1/2):293-300

    6. [6]

      ZHANG Ping, HUANG Yao, WANG Tian-Qi, et al. Journal of Nanchang University:Engineering & Technology, 2013, 35(3):222-226

    7. [7]

      Xu Z P, Jin Y G, Liu S M, et al. J. Colloid Interface Sci., 2008, 326(2):522-529

    8. [8]

      Wang C, Ma B, Xu S M, et al. Nano Energy, 2017, 32:463-469

    9. [9]

      Zhang L J, Chen R, Hui K N, et al. Chem. Eng. J., 2017, 325:554-563

    10. [10]

      Li Y, Liu S T, Chen W, et al. J. Alloys Compd., 2017, 712:139-146

    11. [11]

      Wang Y, Dou H, Wang J, et al. J. Power Sources, 2016, 327:221-228

    12. [12]

      Kim J E, OH J H, Kotal M, et al. Nano Today, 2017, 14:100-123

    13. [13]

      Zubair M, Daud M, Mckay G, et al. Appl. Clay Sci., 2017, 143:279-292

    14. [14]

      Lu L, Li J, Ng D H L, et al. J. Ind. Eng. Chem., 2017, 46:315-323

    15. [15]

      Li H G, Inukal K, Takahashi Y, et al. J. Asian Ceram. Soc., 2017, 5(2):216-225

    16. [16]

      He X J, Yu H H, Fan L W, et al. Mater. Lett., 2017, 195:31-33

    17. [17]

      Sun T, Wang J J, Khoso N A, et al. Mater. Lett., 2017, 191:61-64

    18. [18]

      Sun Y Y, Zhou J B, Cai W Q, et al. Appl. Surf. Sci., 2015, 349:897-903

    19. [19]

      von Hoessle F, Plank J, Leroux F. J. Phys. Chem. Solids, 2015, 80:112-117

    20. [20]

      ZHANG Ping, QIAN Guang-Ren, WANG Tian-Qi, et al. Chinese Journal of Environmental Engineering, 2013, 7(10):3708-3712

    21. [21]

      Li H, Li J, Xu C, et al. J. Alloys Compd., 2017, 698:852-862

    22. [22]

      El Hassani K, Beakou B H, Kalnina D, et al. Appl. Clay Sci., 2017, 40:24-131

    23. [23]

      Sun H X, Chu Z Y, Hong D H, et al. J. Alloys Compd., 2016, 658:561-568

    24. [24]

      Zhang P, Wang T Q, Qian G R, et al. Spectrochim. Acta, Part A, 2015, 149:166-172

    25. [25]

      Zhao H T, Nagy K L. J. Colloid Interface Sci., 2004, 274(2):613-624

    26. [26]

      Tao Q, Yuan J, Frost R L, et al. Appl. Clay Sci., 2009, 45(4):262-269

    27. [27]

      Zhang P, Qian G R, Xu Z P, et al. J. Colloid Interface Sci., 2012, 367(1):264-271

    28. [28]

      Sun X M, Li Y D. Angew. Chem. Int. Ed., 2004, 43(5):597-601

    29. [29]

      Wang T Q, Zhang P, Wu D S, et al. J. Colloid Interface Sci., 2015, 443:65-71

    30. [30]

      Chen C P, Zhou W J, Yang Q, et al. Chem. Eng. J., 2014, 240:487-493

    31. [31]

      Zhu L Z, Ruan X X, Chen B L, et al. Chemosphere, 2008, 70(11):1987-1994

  • 加载中
    1. [1]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    2. [2]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    3. [3]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    6. [6]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    7. [7]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    8. [8]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    9. [9]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    10. [10]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    11. [11]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    12. [12]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    13. [13]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    14. [14]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    15. [15]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    16. [16]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    17. [17]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    18. [18]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

Metrics
  • PDF Downloads(10)
  • Abstract views(1124)
  • HTML views(268)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return