Citation: ZHENG Ming, ZHANG Hong-Xing, YUAN Fu-Long, PAN Qing-Jiang. Relativistic DFT Calculations of Interaction between Rutile TiO2 Nanoparticle Clusters and Uranyl Species[J]. Chinese Journal of Inorganic Chemistry, ;2018, 34(5): 874-882. doi: 10.11862/CJIC.2018.120 shu

Relativistic DFT Calculations of Interaction between Rutile TiO2 Nanoparticle Clusters and Uranyl Species

Figures(6)

  • The interaction between rutile TiO2 nanoparticle clusters (NPCs) and aquouranyl species have been examined using a relativistic functional theory (DFT). Effects of NPCs with various layers (1~4) and different surface areas on structural parameters of uranium adsorption complexes as well as adsorption interaction energies were investigated. It is found that the two-layered (2L) NPC (labeled as 2L-Ti15) with a surface area of 1.1 nm×0.6 nm and containing 63 atoms can reasonably stand for experimentally real TiO2 nanocrystallite. Moreover, the model is able to save computational resources. Calculations reveal a covalent bonding interaction in the 2L-Ti15-[(UO2)(H2O)3]2+ complex. The direct evidences include that the bond lengths of U-Osurf were optimized to be 0.233~0.238 nm, which fall well within the range of U-O distances of reported uranyl complexes. The process that the NPC adsorbs aquouranyl species is exothermic in the gas phase, releasing energy of -3.02 eV; the consideration of environment media of solution results in a slightly uphill process, requiring 0.16 eV energy. The energetic decomposition indicates that U-Osurf bonds are dominated by orbital interactions, accounting for 94%; other factors show a little effect, although electrostatic attraction is a little larger than Pauli repulsion. Electron density-based QTAIM (quantum theory of atoms in molecule) analyses unravel that the U-Osurf interaction is a dative bond per se, whose strength is stronger than that of U-OH2, but much weaker than that of U=Oyl. Inspection of wavefunction demonstrates that HOMO is contributed by O(2p) of NPC TiO2 mixed with a small amount of σ(U=O) bonding character, while LUMO is U(5f)-based character modified by Ti(3d). The HOMO-LUMO gap was calculated to be 2.40 eV, which much narrower than the one of NPC semiconductor (3.35 eV). From a point of view of absorption spectra, the complex system would present a visible light-harvesting capability.
  • 加载中
    1. [1]

      Hashke J M, Stakebake J L. The Chemistry of the Actinide and Transactinide Elements. Dordrecht:Springer, 2006:3199-3272

    2. [2]

      Chen Z, Zhuang Z Y, Cao Q, et al. ACS Appl. Mater. Interfaces, 2014, 6(2):1301-1305  doi: 10.1021/am405306j

    3. [3]

      GU Jia-Fang, XU Ke, CHEN Wen-Kai. Chinese J. Inorg. Chem., 2017, 33(9):1579-1586  doi: 10.11862/CJIC.2017.179
       

    4. [4]

      Natrajan L S, Swinburne A N, Andrews M B, et al. Coord. Chem. Rev., 2014, 266:171-193
       

    5. [5]

      Sandhu S S, Kohli K B, Brar A S. Inorg. Chem., 1984, 23(22):3609-3612  doi: 10.1021/ic00190a036

    6. [6]

      Nieweg J A, Lemma K, Trewyn B G, et al. Inorg. Chem., 2005, 44(16):5641-5648  doi: 10.1021/ic050130e

    7. [7]

      Krishna V, Kamble V S, Gupta N M, et al. J. Phys. Chem. C, 2008, 112(40):15832-15843  doi: 10.1021/jp802779e

    8. [8]

      Vandenborre J, Drot R, Simoni E. Inorg. Chem., 2007, 46(4):1291-1296  doi: 10.1021/ic061783d

    9. [9]

      Zhao S, Zhong Y, Guo Y, et al. Acta Chim. Sinica, 2016, 74(8):683-688  doi: 10.6023/A16060294

    10. [10]

      GU Jia-Fang, MAN Mei-Ling, LU Chun-Hai, et al. Chinese. J. Inorg. Chem., 2012, 28(7):1324-1332
       

    11. [11]

      Perron H, Domain C, Roques J, et al. Inorg. Chem., 2006, 45(17):6568-6570  doi: 10.1021/ic0603914

    12. [12]

      Pan Q J, Odoh S O, Schreckenbach G, et al. Dalton Trans., 2012, 41(29):8878-8885  doi: 10.1039/c2dt31055d

    13. [13]

      Zhao H B, Zheng M, Schreckenbach G, et al. Inorg. Chem., 2017, 56(5):2763-2776  doi: 10.1021/acs.inorgchem.6b02927

    14. [14]

      Dossot M, Cremel S, Vandenborre J, et al. Langmuir, 2006, 22(1):140-147  doi: 10.1021/la0519913

    15. [15]

      Laikov D N. Chem. Phys. Lett., 1997, 281(1/2/3):151-156
       

    16. [16]

      Fonseca Guerra C, Snijders J G, te Velde G, et al. Theor. Chem. Acc., 1998, 99(6):391-403

    17. [17]

      Bader R F W. J. Phys. Chem. A, 1998, 102:7314-7323  doi: 10.1021/jp981794v

    18. [18]

      Pye C C, Ziegler T. Theor. Chem. Acc., 1999, 101(6):396-408  doi: 10.1007/s002140050457

    19. [19]

      van Lenthe E, Baerends E J, Snijders J G. J. Chem. Phys., 1993, 99(6):4597-4610  doi: 10.1063/1.466059

    20. [20]

      Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian09, Gaussian, Inc., Wallingford CT, 2009.

    21. [21]

      Lu T, Chen F. J. Comput. Chem., 2012, 33(5):580-592  doi: 10.1002/jcc.v33.5

    22. [22]

      Pan Q J, Schreckenbach G. Inorg. Chem., 2010, 49(14):6509-6517  doi: 10.1021/ic100245a

    23. [23]

      Arnold P L, Jones G M, Odoh S O, et al. Nat. Chem., 2012, 4(3):221-227  doi: 10.1038/nchem.1270

    24. [24]

      Den Auwer C, Drot R, Simoni E, et al. New J. Chem., 2003, 27(3):648-655  doi: 10.1039/b209961f

    25. [25]

      Sebbari K, Roques J, Simoni E, et al. Surf. Sci., 2012, 606(15/16):1135-1141
       

  • 加载中
    1. [1]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    2. [2]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    3. [3]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    4. [4]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    5. [5]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    6. [6]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    7. [7]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    8. [8]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    9. [9]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    10. [10]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    11. [11]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    12. [12]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    13. [13]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    14. [14]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    15. [15]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    16. [16]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    17. [17]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    18. [18]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    19. [19]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    20. [20]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

Metrics
  • PDF Downloads(3)
  • Abstract views(659)
  • HTML views(140)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return