Citation: WU Guan, ZHOU Ying-Ke. Preparation by Employing Mixed Lithium Source and Carbon Content Optimization of LiFePO4/C Materials[J]. Chinese Journal of Inorganic Chemistry, ;2018, 34(5): 850-856. doi: 10.11862/CJIC.2018.118 shu

Preparation by Employing Mixed Lithium Source and Carbon Content Optimization of LiFePO4/C Materials

  • Corresponding author: ZHOU Ying-Ke, Zhouyingke@wust.edu.cn
  • Received Date: 19 December 2017
    Revised Date: 12 March 2018

Figures(8)

  • The LiFePO4/C composites have been successfully synthesized by adopted Li2CO3 and LiOH·H2O as mixed lithium source, the carbon content of the as-prepared LiFePO4/C materials have been optimized. Since the melting point of LiOH is lower than that of Li2CO3, adopt mixed lithium source can achieve better melting state at the same temperature, and favors the conductivity of lithium ions during the high temperature synthetic process to obtain pure LiFePO4 structure. The carbon content of LiFePO4/C composites were optimized to improve the electroconductivity and control the particle size. The LiFePO4/C cathode displayed excellent crystal structure, processability and electrochemical performances. The discharge capacity of the as-obtained LiFePO4/C composites is as high as 158.2 mAh·g-1, after 100 days storage, the capacity retention of full cells is still maintained higher than 94.0%, representing the superior long-term reliability of the optimized LiFePO4/C material.
  • 加载中
    1. [1]

      Sun C W, Rajasekhara S, Goodenough J B, et al. J. Am. Chem. Soc., 2011, 133(7):2132-2135  doi: 10.1021/ja1110464

    2. [2]

      Prosini P P, Zane D, Pasquali M. Electrochim. Acta, 2001, 46(23):3517-3523  doi: 10.1016/S0013-4686(01)00631-4

    3. [3]

      WANG Xiao-Jian, REN Jun-Xia, LI Yu-Zhan, et al. Chinese J. Inorg. Chem., 2005, 21(2):249-252
       

    4. [4]

      CHEN Yu, WANG Zhong-Li, YU Chun-Yang, et al. Acta Phys.-Chim. Sin., 2008, 24(8):1498-1502
       

    5. [5]

      Wilcox J D, Doeff M M, Marcinek M, et al. J. Electrochem. Soc., 2007, 154(5):A389-A395  doi: 10.1149/1.2667591

    6. [6]

      Recham N, Dupont L, Courty M, et al. Chem. Mater., 2009, 21(6):1096-1107  doi: 10.1021/cm803259x

    7. [7]

      XIAO Zheng-Hui, LI Xue-Liang, CHEN Fei, et al. Journal of the Chinese Ceramic Society, 2012, 40(12):1823-1827
       

    8. [8]

      ZHU Ling-Zhi, WANG Chen-Xu, HAN En-Shan, et al. Chemical Industry and Engineering Progress, 2010, 29(10):1927-1934
       

    9. [9]

      Liu H, Li C, Zhang H P, et al. J. Power Sources, 2006, 159(1):717-720  doi: 10.1016/j.jpowsour.2005.10.098

    10. [10]

      Murugan A V, Muraliganth T, Manthiram A. J. Phys. Chem. C, 2008, 112(112):46-54
       

    11. [11]

      LU Jun-Biao, TANG Zi-Long, ZHANG Zhong-Tai, et al. Journal of Inorganic Materials, 2005, 20(3):666-670
       

    12. [12]

      NI Jiang-Feng, ZHOU Heng-Hui, CHEN Ji-Tao, et al. Chinese J. Inorg. Chem., 2005, 21(4):472-476
       

    13. [13]

      Wang L, He X M, Sun W T, et al. Nano Lett., 2012, 12(11):5632-5636  doi: 10.1021/nl3027839

    14. [14]

      Huang Y H, Park K S, Goodenough J B. J. Electrochem. Soc., 2015, 153(12):A2282-A2286

    15. [15]

      Chueh W C, Gabaly F E, Sugar J D, et al. Nano Lett., 2013, 13(3):866-872  doi: 10.1021/nl3031899

    16. [16]

      Liu H, Xie J Y, Wang K. J. Alloys Compd., 2008, 459(1):521-525
       

    17. [17]

      XIAO Zheng-Wei, HU Guo-Rong, DU Ke, et al. Chinese Journal of Nonferrous Metals, 2007, 17(12):2040-2045  doi: 10.3321/j.issn:1004-0609.2007.12.022

    18. [18]

      NI Jiang-Feng, ZHOU Heng-Hui, CHEN Ji-Tao, et al. Acta Phys.-Chim. Sin., 2004, 20(6):582-586
       

    19. [19]

      Zhang X Y, Van H M, Singh D P, et al. Nano Lett., 2014, 14(5):2279-2285  doi: 10.1021/nl404285y

    20. [20]

      Lu F, Zhou Y C, Liu J, et al. Electrochim. Acta, 2011, 56(24):8833-8838  doi: 10.1016/j.electacta.2011.07.079

    21. [21]

      YU Feng, ZHANG Jing-Jie, YANG Yan-Feng, et al. Chinese J. Inorg. Chem., 2009, 25(1):42-46
       

    22. [22]

      Lin C J, Xu S C, Li Z, et al. J. Power Sources, 2015, 294:633-642  doi: 10.1016/j.jpowsour.2015.06.129

    23. [23]

      Chang Y C, Peng C T, Hung I M. J. Mater. Sci., 2014, 49(20):6907-6916  doi: 10.1007/s10853-014-8395-9

    24. [24]

      Wang J J, Sun X L. Energy Environ. Sci., 2012, 5(1):5163-5185  doi: 10.1039/C1EE01263K

    25. [25]

      Saravanan K, Reddy M V, Balaya P, et al. J. Mater. Chem., 2008, 19(5):605-610
       

    26. [26]

      Popovic J, Demircakan R, Tornow J, et al. Small, 2011, 7(8):1127-1135  doi: 10.1002/smll.201002000

  • 加载中
    1. [1]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    2. [2]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    3. [3]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    4. [4]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    5. [5]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    6. [6]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    7. [7]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    8. [8]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    9. [9]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    10. [10]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    11. [11]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    12. [12]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    13. [13]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    14. [14]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    15. [15]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    16. [16]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

Metrics
  • PDF Downloads(2)
  • Abstract views(476)
  • HTML views(109)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return