Citation: YU Ting, GAO Ming-Yan, SONG Yan, LI Dan, LIU Gui-Xia, DONG Xiang-Ting, WANG Jin-Xian. Synthesis, Luminescence and Energy Transfer of Dy3+ and Eu3+ Co-doped LiGd(MoO4)2 Single-Phase Phosphors[J]. Chinese Journal of Inorganic Chemistry, ;2018, 34(5): 857-863. doi: 10.11862/CJIC.2018.116 shu

Synthesis, Luminescence and Energy Transfer of Dy3+ and Eu3+ Co-doped LiGd(MoO4)2 Single-Phase Phosphors

  • Corresponding author: LIU Gui-Xia, liuguixia22@163.com
  • Received Date: 28 December 2017
    Revised Date: 10 February 2018

Figures(10)

  • Series of Dy3+, Eu3+ co-doped LiGd(MoO4)2 phosphors were prepared via sol-gel method, the samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and fluorescence spectrometer. The results show that the scheelite structured LiGd (MoO4)2:Dy3+, Eu3+ fluorescent powder is irregular and the particle diameter is 1.8 μm. Photoluminescence spectra show that the phosphors exhibit yellow and blue emission of Dy3+ and red emission of Eu3+ upon 354 nm near ultraviolet light excitation. The critical distance of Dy3+ and Eu3+ is calculated to be 1.383 nm. The mechanism of energy transfer from Dy3+ to Eu3+ is dipole-quadrupole interaction. By adjusting the concentration of Dy3+ and Eu3+, the phosphor can realize the warm-white-light emitting. Moreover, the relationship between the value of correlated color temperature and the rare earth ions (Dy3+, Eu3+) doped concentration was studied in detail.
  • 加载中
    1. [1]

      Guan H X, Sheng Y, Song Y H, et al. RSC Adv., 2016, 6(77):73160-73169  doi: 10.1039/C6RA14296F

    2. [2]

      Zhang Y, Gong W T, Yu J J, et al. RSC Adv., 2015, 5(117):96272-96280  doi: 10.1039/C5RA19345A

    3. [3]

      Du P, Guo Y, Lee S H, et al. RSC Adv., 2017, 7(6):3170-3178  doi: 10.1039/C6RA25652J

    4. [4]

      Li J H, Yan J, Wen D W, et al. J. Mater. Chem. C, 2016, 4(37):8611-8623  doi: 10.1039/C6TC02695H

    5. [5]

      Singh B P, Ramakrishna P V, Singh S, et al. RSC Adv., 2015, 5(69):55977-55985  doi: 10.1039/C5RA06692A

    6. [6]

      Gupta S K, Ghosh P S, Sudarshan K, et al. Dalton Trans., 2015, 44(44):19097-19110  doi: 10.1039/C5DT03113C

    7. [7]

      Feng X, Feng W L, Xia M, et al. RSC Adv., 2016, 6(18):14826-14831  doi: 10.1039/C5RA22631G

    8. [8]

      Lim C S, Aleksandrovsky A S, Molokeev M S, et al. Phys. Chem. Chem. Phys., 2015, 17(29):19278-19287  doi: 10.1039/C5CP03054D

    9. [9]

      Li A M, Xu D K, Lin H, et al. RSC Adv., 2015, 5(57):45693-45702  doi: 10.1039/C5RA06221G

    10. [10]

      Laguna M, Nuez N O, Becerro A I, et al. CrystEngComm, 2017, 19(12):1590-1600  doi: 10.1039/C6CE02611G

    11. [11]

      Du P, Yu J S. RSC Adv., 2015, 5(74):60121-60127  doi: 10.1039/C5RA06053B

    12. [12]

      Zhou L, Hu S S, Zhou X J, et al. CrystEngComm, 2016, 18(39):7590-7600  doi: 10.1039/C6CE01541G

    13. [13]

      Luitel H N, Chand R, Hamajimah, et al. J. Mater. Chem. B, 2016, 4(37):6192-6199  doi: 10.1039/C6TB00965D

    14. [14]

      Sun W F, Chen Z H, Zhou J L, et al. Phys. Chem. Chem. Phys., 2016, 18(48):33320-33328  doi: 10.1039/C6CP06571F

    15. [15]

      LIU Yan, JIANG Ying-Ying, LIU Gui-Xia, et al. Chinese J. Inorg. Chem., 2013, 29:277-282
       

    16. [16]

      WU Jin-Xiu, LI Mei, CUI Song-Song, et al. Chinese J. Inorg. Chem., 2017, 33(2):219-226  doi: 10.11862/CJIC.2017.036
       

    17. [17]

      ZHOU Xian-Ju, CHEN Jia, YANG Xiao-Dong. Chinese J. Inorg. Chem., 2012, 28(5):932-936
       

    18. [18]

      Laguna M, Nuez N O, Rodnguez V, et al. Dalton Trans., 2016, 45(41):16354-16365  doi: 10.1039/C6DT02663J

    19. [19]

      Wang Z L, Liang H B, Gong M L, et al. J. Alloys Compd., 2007, 432(25):308-312
       

    20. [20]

      Wang Z L, Liang H B, Gong M L, et al. Opt. Mater., 2007, 29(7):896-900  doi: 10.1016/j.optmat.2005.12.010

    21. [21]

      Soni A K, Rai V K. Dalton Trans., 2014, 43(36):13563-13570  doi: 10.1039/C4DT01266F

    22. [22]

      Nadort A, Zhao J G, Goldys E M. Nanoscale, 2016, 8(27):13099-13130  doi: 10.1039/C5NR08477F

    23. [23]

      Qin D, Tang W J. RSC Adv., 2016, 6(51):45376-45385  doi: 10.1039/C6RA10763J

    24. [24]

      Liu J, Kaczmarekam, Billet J, et al. Dalton Trans., 2016, 45(30):12094-12102  doi: 10.1039/C6DT01555G

    25. [25]

      Xie W, Liu G X, Dong X T, et al. RSC Adv., 2015, 5(95):77866-77872  doi: 10.1039/C5RA09947A

    26. [26]

      Liu Y, Liu G X, Dong X T, et al. RSC Adv., 2014, 4(102):58708-58716  doi: 10.1039/C4RA12350F

    27. [27]

      Cheng F R, Xia Z G, Molokeev M S, et al. Dalton Trans., 2015, 44(41):18078-18089  doi: 10.1039/C5DT02760H

    28. [28]

      Ren Q, Lin F, Wu X L, et al. Mater. Res. Bull., 2017, 90:66-72  doi: 10.1016/j.materresbull.2017.02.023

    29. [29]

      Li L L, Zhang J J, Zi W W, et al. Solid State Sci., 2014, 29:58-65  doi: 10.1016/j.solidstatesciences.2014.01.003

    30. [30]

      Liu Y, Wang Y, Wang L P, et al. RSC Adv., 2014, 4(9):4754-4762  doi: 10.1039/C3RA46224B

    31. [31]

      Hu W J, Hu F F, Li X Y, et al. RSC Adv., 2016, 6(88):84610-84615  doi: 10.1039/C6RA18432D

    32. [32]

      Li T, Guo C F, Wu Y R, et al. J. Alloys Compd., 2012, 540:107-112  doi: 10.1016/j.jallcom.2012.04.052

    33. [33]

      Paulose P I, Jose G, Thomas V, et al. J. Phys. Chem. Solids, 2003, 64(5):841-846  doi: 10.1016/S0022-3697(02)00416-X

    34. [34]

      Dexter D L. J. Chem. Phys., 1953, 21(5):836-850  doi: 10.1063/1.1699044

    35. [35]

      Huang C H, Wu P J, Lee J F, et al. J. Mater. Chem., 2011, 21(28):10489-10495  doi: 10.1039/c1jm11018g

  • 加载中
    1. [1]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    2. [2]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    3. [3]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    4. [4]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    5. [5]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    6. [6]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    7. [7]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    8. [8]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    9. [9]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

Metrics
  • PDF Downloads(6)
  • Abstract views(1170)
  • HTML views(187)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return