Citation: SUN Yan, LIU Rui-Ting, WENG Lin-Hong, ZHOU Xi-Geng. Syntheses, Cycloaminocarbonylation and Amidination of Rare Earth o-Aminobenzamido Dianion Complexes Bearing Cyclopentadienyl Co-ligand[J]. Chinese Journal of Inorganic Chemistry, ;2017, 33(11): 2124-2138. doi: 10.11862/CJIC.2017.255 shu

Syntheses, Cycloaminocarbonylation and Amidination of Rare Earth o-Aminobenzamido Dianion Complexes Bearing Cyclopentadienyl Co-ligand

  • Corresponding author: ZHOU Xi-Geng, xgzhou@fudan.edu.cn
  • Received Date: 1 September 2017
    Revised Date: 22 September 2017

Figures(11)

  • Treatment of Cp3Ln with o-aminobenzamide followed by crystallization in a HMPA and toluene mixture affords the tetranuclear organolanthanide complexes [CpLn(μ-η2:η2-NHC6H4CONH)(μ3-η1:η1:η2-NHC6H4CONH)LnCp(HMPA)}2 (Ln=Yb, 1a; Er, 1b; Y, 1c). Reaction of 1 with PhNCO (nPhNCO/n1=4) in toluene gives the dianionic quinazolyldiolate (Quo) complexes [Cp2Ln(μ3-η2:η2:η1-Quo)]3Ln(HMPA)2 (Ln=Yb, 2a; Er, 2b; Y, 2c), indicating that one isocyanate molecule can undergo the tandem reaction with both NH and CONH of 1 to construct a quinazoly-ldiolate skeleton, companying with the elimination of PhNH2. However, 1a~1c react with iPrN=C=NiPr under the same conditions to give only the single ArNH addition products {Cp2Ln[μ-η1:η1:η2-iPrNC(NHiPr)NC6H4 CONH]}3Ln(HMPA)3 (Ln=Yb, 3a; Er, 3b; Y, 3c). Furthermore, treatment of Cp3Ln with o-aminobenzamide followed by reacting with iPrN=C=NiPr gave {CpLn[μ-η1:η2:η2-NHCOC6H4NC(NHiPr)NiPr]}2 (Ln=Yb, 4a; Er, 4b; Y, 4c). Noticeably, HMPA could induce the transformation of 4 into 3 by a ligand redistribution.
  • 加载中
    1. [1]

      (a) Molander G A, Romero J A C. Chem. Rev., 2002, 102(6): 2161-2185
      (b)Muller T E, Hultzsch K C, Yus M. Chem. Rev., 2008, 108 (9): 3795-3892
      (c)Bartoli G, Marcantoni E, Marcolini M, et al. Chem. Rev., 2010, 110(10): 6104-6143
      (d)Zeng X M. Chem. Rev., 2013, 113(8): 6864-6900

    2. [2]

      (a) Evans W J, Davis B L. Chem. Rev., 2002, 102(6): 2119-2136
      (b)Zhou X G, Zhu M. J. Organomet. Chem., 2002, 647(1/2): 28-49
      (c)Hong S, Marks T J. Acc. Chem. Res., 2004, 37(9): 673-686
      (d)Zhang J, Zhou X G. Dalton Trans., 2011, 40(38): 9637-9648
      (e)Liu R T, Zhou X G. Chem. Commun., 2013, 49(31): 3171-3187

    3. [3]

      (a) Jeske G, Lauke H, Mauermann H, et al. J. Am. Chem. Soc., 1985, 107(26): 8091-8103
      (b)Cui D M, Nishiura M, Hou Z M. Angew. Chem. Int. Ed., 2005, 44(6): 959-962
      (c)Wang B L, Wang D, Cui D M, et al. Organometallics, 2007, 26(13): 3167-3172
      (d)Kaneko H, Nagae H, Tsurugi H, et al. J. Am. Chem. Soc., 2011, 133(49): 19626-19629
      (e)Zhou S L, Wang H Y, Ping J, et al. Organometallics, 2012, 31(5): 1696-1702
      (f)Hong L C, Lin W J, Zhou X G, et al. Chem. Commun., 2013, 49(49): 5589-5591

    4. [4]

      (a) Li W B, Xue M Q, Xu F, et al. Dalton Trans., 2012, 41(27): 8252-8260
      (b)Basalov I V, Lyubov D M, Fukin G K, et al. Angew. Chem. Int. Ed., 2012, 51(14): 3444-3447
      (c)Sun J L, Berg D J, Twamley B. Organometallics, 2008, 27 (4): 683-690
      (d)Yang Y, Cui D M, Chen X S. Dalton Trans., 2010, 39(16): 3959-3967
      (e)Li X Q, Hong J Q, Zhou X G, et al. Organometallics, 2010, 29(20): 4606-4610
      (f)Pi C F, Li X Q, Zhang L L, et al. Inorg. Chem., 2010, 49 (17): 7632-7634
      (g)Zhang Z X, Bu X L, Zhang J, et al. Organometallics, 2010, 29(9): 2111-2117
      (h)Lu E L, Chen Y F, Leng X B. Organometallics, 2011, 30 (20): 5433-5441
      (i)Casely I J, Ziller J W, Evans W J. Organometallics, 2011, 30(18): 4873-4881

    5. [5]

      (a) Liu R T, Zhang C M, Zhu Z Y, et al. Chem. Eur. J., 2006, 12 (26): 6940-6952
      (b)Li X Q, Liu R T, Zhang Z X, et al. Organometallics, 2010, 29(15): 3298-3302
      (c)Chu J X, Lu E L, Liu Z X, et al. Angew. Chem. Int. Ed., 2011, 50(33): 7677-7680
      (d)Shao Y L, Zhang F J, Zhang J, et al. Angew. Chem. Int. Ed., 2016, 55(38): 11485-11489
      (e)Hong J Q, Li Z H, Chen Z N, et al. Dalton Trans., 2016, 45(15): 6641-6649
      (f)Huang S J, Shao Y L, Zhang L X, et al. Angew. Chem. Int. Ed., 2015, 54(48): 14452-14456
      (g)Luo Y, Teng H L, Nishiura M, et al. Angew. Chem. Int. Ed., 2017, 56(31): 9207-9210

    6. [6]

      (a) Yasuda H, Yamamoto H, Yokota K, et al. J. Am. Chem. Soc., 1992, 114(12): 4908-4910
      (b)Giardello M A, Yamamoto Y, Brard L, et al. J. Am. Chem. Soc., 1995, 117(11): 3276-3277
      (c)Zhang W X, Nishiura M, Hou Z M. Angew. Chem. Int. Ed., 2008, 47(50): 9700-9703
      (d)Yang J Y, Shen H, Xie Z W. J. Organomet. Chem., 2015, 798: 204-208
      (e)Xu L, Zhai M K, Wang F, et al. Dalton Trans., 2016, 45 (43): 17108-17112
      (f)Song G Y, Wang B L, Nishiura M, et al. Chem. Eur. J., 2015, 21(23): 8394-8398
      (g)Xu P F, Yao Y M, Xu X. Chem. Eur. J., 2017, 23(6): 1263-1267

    7. [7]

      (a) Molander G A, Romero J A C. Chem. Rev., 2002, 102(6): 2161-2185
      (b)Konkol M, Kondracka M, Voth P, et al. Organometallics, 2008, 27(15): 3774-3784
      (c)Ohashi M, Konkol M, Rosal D, et al. J. Am. Chem. Soc., 2008, 130(22): 6920-6921
      (d)Barros N, Eisenstein O, Maron L. Dalton Trans., 2010, 39 (44): 10757-10767
      (e)Abinet E, Spaniol T P, Okuda J. Chem. Asian J., 2011, 6 (2): 389-391

    8. [8]

      (a) Lauterwasser F, Hayes P G, Piers W E, et al. Adv. Synth. Catal., 2011, 353(8): 1384-1390
      (b)Zhang Y Y, Yao W, Li H, et al. Organometallics, 2012, 31 (13): 4670-4679
      (c)Trambitas A G, Melcher D, Hartenstein L, et al. Inorg. Chem., 2012, 51(12): 6753-6761
      (d)Reznichenko A L, Hultzsch K C. Organometallics, 2013, 32(5): 1394-1408
      (e)Huang S J, Shao Y L, Zhang L X, et al. Angew. Chem. Int. Ed., 2015, 54(48): 14452-14456
      (f)Hong S, Marks T J. Acc. Chem. Res., 2004, 37(9): 673-686

    9. [9]

      (a) Yu X H, Seo S Y, Marks T J. J. Am. Chem. Soc., 2007, 129(23): 7244-7245
      (b)Seo S Y, Yu X H, Marks T J. J. Am. Chem. Soc., 2009, 131(1): 263-276

    10. [10]

      (a) Weiss C J, Marks T J. Dalton Trans., 2010, 39: 6576-6588
      (b)Weiss C J, Wobser S D, Marks T J. Organometallics, 2010, 29(23): 6308-6320

    11. [11]

      (a) Douglass M R, Stern C L, Marks T J. J. Am. Chem. Soc., 2001, 123(42): 10221-10238
      (b)Takaki K, Koshoji G, Komeyama K, et al. J. Org. Chem., 2003, 68(17): 6554-6565
      (c)Kawaoka A M, Marks T J. J. Am. Chem. Soc., 2004, 126 (40): 12764-12765
      (d)Hu H F, Cui C M. Organometallics, 2012, 31(3): 1208-1211
      (e)Behrle A C, Schmidt J A R. Organometallics, 2013, 32(5): 1141-1149

    12. [12]

      (a) Hung S C, Wen Y F, Chang J W, et al. J. Org. Chem., 2002, 67(4): 1308-1313
      (b)Schumann H, Heim A, Demtschuk J, et al. Organometallics, 2003, 22(1): 118-128
      (c)Yuan Y Y, Wang X F, Li Y X, et al. Organometallics, 2011, 30(16): 4330-4341

    13. [13]

      (a) Guan B T, Hou Z M. J. Am. Chem. Soc., 2011, 133(45): 18086-18089
      (b)Oyamada J, Hou Z M. Angew. Chem. Int. Ed., 2012, 51: 12828-12832
      (c)Guan B T, Wang B L, Nishiura M, et al. Angew. Chem. Int. Ed., 2013, 52: 4418-4421
      (d)Shi X C, Nishiura M, Hou Z M. J. Am. Chem. Soc., 2016, 138: 61476150
      (e)Arnold P L, McMullon M W, Rieb J, et al. Angew. Chem. Int. Ed., 2015, 55: 82-100

    14. [14]

      (a) Monsaert S, Vila A L, Drozdzak R, et al. Chem. Soc. Rev., 2009, 38: 3360-3372
      (b)Leitao E M, van der Eide E F, Romero P E, et al. J. Am. Chem. Soc., 2010, 132(8): 2784-2794
      (c)Woodward C P, Spiccia N D, Jackson W R, et al. Chem. Commun., 2011, 47: 779-781

    15. [15]

      (a) Shima T, Hou Z M. J. Am. Chem. Soc., 2006, 128(25): 8124-8125
      (b)Zhou J L, Chu J X, Zhang Y Y, et al. Angew. Chem. Int. Ed., 2013, 52(15): 4243-4246

    16. [16]

      (a) Zhang W X, Wang Z, Nishiura M, et al. J. Am. Chem. Soc., 2011, 133(15): 5712-5715
      (b)Hong J Q, Zhang L X, Yu X Y, et al. Chem. Eur. J., 2011, 17(7): 2130-2137
      (c)Hong J Q, Zhang L X, Wang K, et al. Chem. Eur. J., 2013, 19(24): 7865-7873

    17. [17]

      (a) Masui H, Fuse S, Takahashi T. Org. Lett., 2012, 14(16): 4090-4093
      (b)Campbell M J, Toste F D. Chem. Sci., 2011, 2(7): 1369-1378
      (c)Attanasi O A, de Crescentini L, Favi G S. et al. Org. Lett., 2011, 13(3): 353-355
      (d)Groenendaal B, Vugts D J, Schmitz R F, et al. J. Org. Chem., 2008, 73(2): 719-722
      (e)Church T L, Byrne C M, Lobkovsky E B, et al. J. Am. Chem. Soc., 2007, 129(26): 8156-8162

    18. [18]

      (a) Braunstein P, Nobel D. Chem. Rev., 1989, 89(8): 1927-1945
      (b)Kuninobu Y, Tokunaga Y, Kawata A, et al. J. Am. Chem. Soc., 2006, 128(1): 202-209
      (c)Paul F, Moulin S, Piechaczyk O, et al. J. Am. Chem. Soc., 2007, 129(23): 7294-7304
      (d)Zhu X C, Fan J X, Wu Y J, et al. Organometallics, 2009, 28 (13): 3882-3888
      (e)Sharpe H R, Geer A M, Williams H E L, et al. Chem. Commun., 2017, 53(5): 937-940

    19. [19]

      (a) Evans W J, Forrestal K J, Ziller J W. J. Am. Chem. Soc., 1998, 120(36): 9273-9282
      (b)Shen Q, Li H R, Yao C S, et al. Organometallics, 2001, 20(14): 3070-3073
      (c)Shen Q, Yao Y M. J. Organomet. Chem., 2002, 647(1/2): 180-189
      (d)Han Y N, Zhang J, Han F Y, et al. Organometallics, 2009, 28(13): 3916-3921
      (e)Yi W Y, Zhang J, Li M, et al. Inorg. Chem., 2011, 50(22): 11813-11824

    20. [20]

      (a) Zhang J, Ma L P, Cai R F, et al. Organometallics, 2005, 24(4): 738-742
      (b)Du Z, Zhou H, Yao H, et al. Chem. Commun., 2011, 47 (12): 3595-3597

    21. [21]

      Tardif O, Hashizume D, Hou Z M. J. Am. Chem. Soc., 2004, 126(26):8080-8081  doi: 10.1021/ja047889u

    22. [22]

      Qian C T, Ye C Q, Lu H Z, et al. J. Organomet. Chem., 1983, 247(2):161-170  doi: 10.1016/S0022-328X(00)98751-5

    23. [23]

      SAINTPlus, Data Reduction and Correction Program Ver. 6. 02a, Bruker AXS, Madison, WI, 2000.

    24. [24]

      Sheldrick G M. SADABS, A Program for Empirical Absorption Correction, University of Göttingen, Germany, 1998.

    25. [25]

      Sheldrick G M. SHELXL-97, Program for the Refinement of Crystal Structures, University of Göttingen, Germany, 1997.

    26. [26]

      (a) Sun Y, Zhang Z X, Wang X, et al. Organometallics, 2009, 28(21): 6320-6330
      (b)Sun Y, Zhang Z X, Wang X, et al. Dalton Trans., 2010, 39(1): 221-226
      (c)Zhang J, Han Y N, Han F Y, et al. Inorg. Chem., 2008, 47(13): 5552-5554

    27. [27]

      (a) Pi C F, Liu R T, Zheng P Z, et al. Inorg. Chem., 2007, 46 (13): 5252-5259
      (b)Pi C F, Zhu Z Y, Weng L H, et al. Chem. Commun., 2007 (21): 2190-2192
      (c)Pi C F, Zhang Z X, Pang Z, et al. Organometallics, 2007, 26(8): 1934-1946

    28. [28]

      (a) Evans W J, Ulibarri T A, Chamberlain L R, et al. Orga-nometallics, 1990, 9(7): 2124-2130
      (b)Evans W J, Foster S E. J. Organomet. Chem., 1992, 433 (1/2): 79-94
      (c)Venugopal A, Kamps I, Bojer D, et al. Dalton Trans., 2009(29): 5755-5765

    29. [29]

      (a) Willis M C, Snell R H, Fletcher A J, et al. Org. Lett., 2006, 8(22): 5089-5091
      (b)Vorbrueggen H, Krolikiewicz K. Tetrahedron, 1994, 50 (22): 6549-6558
      (c)Li J R, Chen X A, Shi D X, et al. Org. Lett., 2009, 11(6): 1193-1196
      (d)Patil Y P, Tambade P J, Deshmukh K M, et al. Catal. Today, 2009, 148(3/4): 355-360

    30. [30]

      Zhou X G, Huang Z E, Cai R F, et al. J. Organomet. Chem., 1998, 563(1/2):101-112
       

    31. [31]

      Allen F H, Kennard O, Watson D G, et al. J. Chem. Soc., Perkin Trans., 1987(12):S1-S19  doi: 10.1039/p298700ba001

  • 加载中
    1. [1]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    2. [2]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    3. [3]

      Guihuang FangWei ChenHongwei YangHaisheng FangChuang YuMaoxiang Wu . Improved performance of LiMn0.8Fe0.2PO4 by addition of fluoroethylene carbonate electrolyte additive. Chinese Chemical Letters, 2024, 35(6): 108799-. doi: 10.1016/j.cclet.2023.108799

    4. [4]

      Yan-Li LiZhi-Ming LiKai-Kai WangXiao-Long He . Beyond 1,4-addition of in-situ generated (aza-)quinone methides and indole imine methides. Chinese Chemical Letters, 2024, 35(7): 109322-. doi: 10.1016/j.cclet.2023.109322

    5. [5]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    6. [6]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    7. [7]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    8. [8]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    9. [9]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    10. [10]

      Shili WangMamitiana Roger RazanajatovoXuedong DuShunli WanXin HeQiuming PengQingrui Zhang . Recent advances on decomplexation mechanisms of heavy metal complexes in persulfate-based advanced oxidation processes. Chinese Chemical Letters, 2024, 35(6): 109140-. doi: 10.1016/j.cclet.2023.109140

    11. [11]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

    12. [12]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    13. [13]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    14. [14]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    15. [15]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    16. [16]

      Shengwen GuanZhaotong WeiNingxu HanYude WeiBin XuMing WangJunjuan Shi . Construction of metallo-complexes with 2,2′:6′,2″-terpyridine substituted triphenylamine in different modified positions and their photophysical properties. Chinese Chemical Letters, 2024, 35(7): 109348-. doi: 10.1016/j.cclet.2023.109348

    17. [17]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    18. [18]

      Jingyuan YangXinyu TianLiuzhong YuanYu LiuYue WangChuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745

    19. [19]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    20. [20]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

Metrics
  • PDF Downloads(1)
  • Abstract views(371)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return