Citation: PENG Xiang, CHEN Yu-Jie, LIU Jia-Xiang. Solvothermal Synthesis and Electrical Performance of Cubic ITO Powders[J]. Chinese Journal of Inorganic Chemistry, ;2017, 33(10): 1769-1774. doi: 10.11862/CJIC.2017.224 shu

Solvothermal Synthesis and Electrical Performance of Cubic ITO Powders

  • Corresponding author: LIU Jia-Xiang, ljxpost@263.net
  • Received Date: 19 April 2017
    Revised Date: 23 July 2017

Figures(8)

  • Using ethylene glycol, ethanol as mixed solvents, cubic shape ITO powders were synthesized. The effect of reaction time, the concentration of NaOH on the phase and the morphology of ITO powders was investigated, and their influence on the electric conductivity and the mechanisms of ITO powders were also discussed. The results show that using the ethylene glycol and ethanol as mixed solvents, VEG:VEtOH=4:1, the cubic shape ITO powders with good dispersancy are prepared, the average particle size is 10.7 nm, and the XRD diffraction intensity ratio I400/I222 gets up to 0.380. when the ethylene glycol and ethanol act as mixed solvents, VEG:VEtOH=4:1, and the concentration of NaOH is 0.275 mol·L-1, the electric conductivity of the powder gets up to the maximum 46.75 mS·cm-1.
  • 加载中
    1. [1]

      ZHONG Zhi-You, LU Zhou. New Chemical Materials, 2016, 44(8):62-64

    2. [2]

      Alam M Z, De Leon I, Boyd R W. Science, 2016, 353(6287):795-797

    3. [3]

      Sunde T O L, Einarsrud M-A, Grande T. J. Eur. Ceram. Soc., 2013, 33(3):565-574  doi: 10.1016/j.jeurceramsoc.2012.09.023

    4. [4]

      DUAN Yu-Lu, YE Rui, YAN Xing-Chen, et al. Materials Science and Engineering of Powder Metallurgy, 2014, 19(13):413-419

    5. [5]

      GU Ying-Ying, FENG Sheng-Sheng, ZHANG Li-Juan, et al. Chinese Journal of Rare Metal, 2006, 30(4):466-468

    6. [6]

      Sasaki T, Endo Y, Nakaya M, et al. J. Mater. Chem., 2010, 20:8153-8157  doi: 10.1039/c0jm01338b

    7. [7]

      Senthilkumar V, Senthil K, Vickraman P. Mater. Res. Bull., 2012, 47(4):1051-1056  doi: 10.1016/j.materresbull.2011.12.040

    8. [8]

      Huaman J L C, Tanoue K, Miyamura H, et al. New J. Chem., 2014, 38(8):3421-3428  doi: 10.1039/C4NJ00061G

    9. [9]

      DENG Xiao-Ling, CHEN Qing-Qing, MENG Jian-Xin. Chinese J. Inorg. Chem., 2009, 25(6):991-994
       

    10. [10]

      Hirano M, Kato E. J. Am. Ceram. Soc., 1999, 82(3):786-788

    11. [11]

      Choi C H, Han S Y, Su Y W, et al. J. Mater. Chem. C, 2015, 3:854-860  doi: 10.1039/C4TC01568A

    12. [12]

      ZHANG Yi-Qing, LIU Jia-Xiang. Chinese J. Inorg. Chem., 2017, 33(2):249-254  doi: 10.11862/CJIC.2017.041
       

    13. [13]

      Ba J H, Fattakhova-Rohlfing D, Feldhoff A, et al. Chem. Mater., 2006, 18(12):2848-2854  doi: 10.1021/cm060548q

    14. [14]

      Shimada S, Mackenzie K J D. J. Cryst. Growth, 1981, 55:453-456  doi: 10.1016/0022-0248(81)90101-9

    15. [15]

      Kim D, Han Y, Cho J S, et al. Thin Solid Films, 2000, 377(388):81-86

    16. [16]

      Thilakan P, Kumar J. Vacuum, 1997, 48(5):463-466  doi: 10.1016/S0042-207X(96)00309-0

    17. [17]

      Ali D, Butt M Z, Muneer I, et al. Optik, 2017, 128:235-246  doi: 10.1016/j.ijleo.2016.10.028

    18. [18]

      Kamei M, Shigesato Y, Takaki S. Thin Solid Films, 1995, 259:38-45  doi: 10.1016/0040-6090(94)06390-7

    19. [19]

      Kamei M, Enomoto H, Yasui I. Thin Solid Films, 2001, 392:265-268  doi: 10.1016/S0040-6090(01)01041-0

    20. [20]

      Lee J S, Choi S C. J. Eur. Ceram. Soc., 2005, 25(14):3307-3314  doi: 10.1016/j.jeurceramsoc.2004.08.022

    21. [21]

      YU Da-Hong, LIU Hong-Lai, HU Ying. Journal of East China Institute of Chemical Technology, 1991(2):159-164

    22. [22]

      HAN Lan-Ying, CHEN Guang-Ding. Journal of Shangrao Teachers College, 1997, 17(6):53-56

  • 加载中
    1. [1]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    4. [4]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    5. [5]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    6. [6]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

Metrics
  • PDF Downloads(2)
  • Abstract views(2409)
  • HTML views(126)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return