Citation: WANG Zhu-Mei, ZHU Xiao-Ling, LI Yue-Ming, LIAO Run-Hua, SHEN Zong-Yang. Effect of NaBF4 Addition on the Preparation of TiO2 Nanotubes Photocatalyst by Anodic Oxidation Method[J]. Chinese Journal of Inorganic Chemistry, ;2017, 33(6): 970-976. doi: 10.11862/CJIC.2017.113 shu

Effect of NaBF4 Addition on the Preparation of TiO2 Nanotubes Photocatalyst by Anodic Oxidation Method

  • Corresponding author: LI Yue-Ming, lym6329@163.com
  • Received Date: 2 December 2016
    Revised Date: 21 March 2017

Figures(10)

  • Visible light-active boron doped TiO2 nanotube arrays (B/TNTs) were synthesized by adding NaBF4 in anodic oxidation electrolyte. The photocatalytic properties to methylene blue(MB) solution were investigated under visible light irradiation. FE-SEM analysis showed that the morphology of B/TNTs was obviously different. EDS, XPS and FTIR analysis indicated that boron was incorporated into the TNTs lattice to form B-O-Ti bond. B doping could effectively promote the formation of active group Ti-OH on the surface of TiO2, decrease the band gap energy and make the absorption edges of the samples red-shifting. Such effect became stronger with the increase of the B doping concentration. XRD analysis indicated that B doping promoted the growth of anatase grains. The doped TiO2 nanotubes can form anatase phase as pure one when calcined at 550 ℃. The B/TNTs with an optimal photocatalytic activity were fabricated with the NaBF4 concentration of 0.6%(w/w). The photocatalytic degradation rate of MB in 4 h increased from 39.90% for TNTs without NaBF4 addition to 69% for B/TNTs, and their photocatalytic degradation ability is basically unchanged after using 10 times. The total organic carbon(TOC) removal rates indicated that the MB can be efficiently mineralized under visible light illumination.
  • 加载中
    1. [1]

      Niraula M, Adhikari S, Lee D Y, et al. Chem. Phys. Lett., 2014, 593(6):193-197

    2. [2]

      HUAND Yi-Cao, ZHAO Zhe-Fei, LI Shi-Xiong, et al. Chinese J. Inorg. Chem., 2015, 31(1):133-139
       

    3. [3]

      So S, Hwang I, Schmuki P. Energy Environ. Sci., 2015, 8(3):849-854  doi: 10.1039/C4EE03729D

    4. [4]

      WANG Ying-Ying, CAI Jian-Huai, SUN Lan, et al. Chinese J. Inorg. Chem., 2012, 28(4):647-656
       

    5. [5]

      Asahi R, Morikawa T, Ohwaki T, et al. Science, 2001, 293(5528):269-271  doi: 10.1126/science.1061051

    6. [6]

      Wu H J, Zhang Z H. Int. J. Hydrogen Energy, 2011, 36(21):13481-13487  doi: 10.1016/j.ijhydene.2011.08.014

    7. [7]

      Lin X X, Liu J, Fu D G. Adv. Mater. Res., 2014, 860-863:907-910

    8. [8]

      Lu N, Zhao H M, Li J Y, et al. Sep. Purif. Technol., 2008, 62(3):668-673  doi: 10.1016/j.seppur.2008.03.021

    9. [9]

      Parayil S K, Kibombo H S, Koodali R T. Catal. Today, 2013, 199(1):8-14

    10. [10]

      Hassan F M B, Nanjo H, Venkatachalam S, et al. J. Power Sources, 2010, 195(18):5889-5895  doi: 10.1016/j.jpowsour.2009.12.053

    11. [11]

      Sun H Q, Wang S B, Ang H M, et al. Chem. Eng. J., 2010, 162(2):437-447  doi: 10.1016/j.cej.2010.05.069

    12. [12]

      Muhamed A E R, Rohani S. Energy Environ. Sci., 2011, 4:1065-1086  doi: 10.1039/c0ee00488j

    13. [13]

      Wu Y, Xing M, Zhang J, et al. Appl. Catal. B:Environ., 2010, 97(1/2):182-189

    14. [14]

      Ratnawati, Gunlazuardi J, Dewi E L, et al. Int. J. Hydrogen Energy, 2014, 39(30):16927-16935  doi: 10.1016/j.ijhydene.2014.07.178

    15. [15]

      Li H, Xing J, Xia Z, et al. Electrochim. Acta, 2014, 139(26):331-336

    16. [16]

    17. [17]

      Zaleska A, Sobczak J W, Grabowska E, et al. Appl. Catal. B:Environ., 2008, 78(1):92-100

    18. [18]

      Gopal N O, Lo H H, Ke S C. J. Am. Chem. Soc., 2008, 130(9):27602761

    19. [19]

      Zhao W, Ma W H, Chen C C, et al. J. Am. Chem. Soc., 2004, 126(15), 4782-4783  doi: 10.1021/ja0396753

    20. [20]

      hen D M, Yang D, Wang A Q, et al. Ind. Eng. Chem. Res., 2006, 45(12):4110-4116  doi: 10.1021/ie0600902

    21. [21]

      Silversmit G, Doncker G D, Gryse R D. Surf. Sci. Spectra, 2002, 9(1):21-29  doi: 10.1116/11.20020701

    22. [22]

      Liu Z L, Guo B, Hong L, et al. J. Phys. Chem. Solids, 2000, 66(1):161-167

    23. [23]

      Pang Y L, Abdullah A Z. Chem. Eng. J., 2013, 214(1):129-138

    24. [24]

      Liu G, Sun C, Cheng L, et al. J. Phys. Chem. C, 2009, 113(28):12317-12324  doi: 10.1021/jp900511u

    25. [25]

      Parra R, Góes M S, Castro M S, et al. Agric. Biol. Chem., 2008, 20(10):481-484

    26. [26]

      Hu S, Wang A, Li X, et al. J. Phys. Chem. Solids, 2010, 71(3):156-162  doi: 10.1016/j.jpcs.2009.10.012

    27. [27]

      YUAN Xin-Hua, LIU Li-Ming, YING Wei-Bin. Chin. Spectrosc. Spectral Anal., 2007, 27(7):1355-1358

    28. [28]

      Fujihira M, Satoh Y, Osa T. Bull. Chem. Soc. Jpn., 1982, 55(3):666-671  doi: 10.1246/bcsj.55.666

    29. [29]

      SU Wen-Yue, CHEN Yi-Lin, FU Xian-Zhi, et al. Chin. J. Catal., 2001, 22(2):175-671

    30. [30]

      Yeung K L, Yau S T, Maira A J, et al. J. Catal., 2003, 219(1):107-116  doi: 10.1016/S0021-9517(03)00187-8

    31. [31]

      Paulose M, Mor G K, Varghese O K, et al. J. Photochem. Photobiol. A:Chem., 2006, 178(1):8-15  doi: 10.1016/j.jphotochem.2005.06.013

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    3. [3]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    6. [6]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    7. [7]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    8. [8]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    11. [11]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    12. [12]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    13. [13]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    14. [14]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    15. [15]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    16. [16]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    17. [17]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    18. [18]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    19. [19]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    20. [20]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

Metrics
  • PDF Downloads(0)
  • Abstract views(1146)
  • HTML views(179)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return