Citation: WANG Fu-Xue, WANG Chong-Chen, WANG Peng, XING Bi-Cong. Syntheses and Applications of UiO Series of MOFs[J]. Chinese Journal of Inorganic Chemistry, ;2017, 33(5): 713-737. doi: 10.11862/CJIC.2017.105 shu

Syntheses and Applications of UiO Series of MOFs

  • Corresponding author: WANG Chong-Chen, chongchenwang@126.com
  • Received Date: 21 December 2016
    Revised Date: 4 April 2017

Figures(16)

  • The syntheses methods, structure characteristics and various applications of UiO series of metal-organic frameworks (MOFs) including UiO-66, UiO-67 and UiO-68 were reviewed. The syntheses methods of UiO series of MOFs like evaporation, solvothermal method, microwave-assisted synthesis, mechanochemical synthesis, continuous flow method, and electrochemical synthesis were introduced. The detailed reaction conditions, the compositions and structures characteristic of the final products, and the advantages/disadvantages of above-stated syntheses methods were analyzed. UiO-MOFs possessed both ultrahigh thermal stability and chemical stability resulted from their strong Zr-O bond and high coordination number of Zr (Ⅳ). Considering UiO-MOFs exceptional porosity with uniform but tunable pore sizes, incredibly high internal surface areas and the active Zr-O clusters, they had been used extensively in many research fields like catalysis, photocatalysis, gas adsorption, gas separation, adsorptive removal of organic pollutants in wastewater, medical, capacitor and so on. Finally, the research trends of UiO-MOFs are prospected.
  • 加载中
    1. [1]

      Furukawa H, Miller M A, Yaghi O M. J. Mater. Chem., 2007, 17(30):3197-3204  doi: 10.1039/b703608f

    2. [2]

      An J, Rosi N L. J. Am. Chem. Soc., 2010, 132(16):5578-5579  doi: 10.1021/ja1012992

    3. [3]

      And Y L, Yang R T. Langmuir, 2007, 23:12937  doi: 10.1021/la702466d

    4. [4]

      Mulder F M, Dingemans T J, Wagemaker M, et al. Chem. Phys., 2005, 317(2/3):113-118

    5. [5]

      Li J R, Yu J, Lu W, et al. Nat. Commun., 2013, 4(2):66-78

    6. [6]

      JIA Chao, YUAN Xian-Xia, MA Zi-Feng. Prog. Chem., 2009, 21(9):1954-1962

    7. [7]

      Rowsell J L, Yaghi O M. Angew. Chem. Int. Ed., 2005, 44(30):4670-4679  doi: 10.1002/(ISSN)1521-3773

    8. [8]

      Rosi N L, Eckert J, Eddaoudi M, et al. Science, 2003, 300(5622):1127-1129  doi: 10.1126/science.1083440

    9. [9]

      Wang Z, Zheng B, Liu H, et al. Cryst. Growth Des., 2013, 13(13):5001-5002

    10. [10]

      Mu L, Liu B, Liu H, et al. J. Mater. Chem., 2012, 22(24):12246-12252  doi: 10.1039/c2jm31541f

    11. [11]

      Ma S Q, Zhou H C. Chem. Commun., 2010, 46:44-53  doi: 10.1039/B916295J

    12. [12]

      Li S L, Xu Q. Energy Environ. Sci., 2013, 6:1656-1683  doi: 10.1039/c3ee40507a

    13. [13]

      ZHUANG Chang-Fu, LIU Jian-Lu, DAI Wen, et al. Prog. Chem., 2014, 26(2):277-292

    14. [14]

      QIU Jian-Hao, HE Ming, JIA Ming-Min, et al. Prog. Chem., 2016, 28(7):1016-1028

    15. [15]

      LIU Li-Li, ZHANG Xin, XU Chun-Ming. Prog. Chem., 2010, 22(11):2089-2098

    16. [16]

      LI Qing-Yuan, JI Sheng-Fu, HAO Zhi-Mou. Prog. Chem., 2012, 24(8):1506-1518

    17. [17]

      GUO Rui-Mei, BAI Jin-Quan, ZHANG Heng, et al. Prog. Chem., 2016, 28(2):232-243  doi: 10.7536/PC150804

    18. [18]

      Lee J Y, Farha O K, Roberts J, et al. Chem. Soc. Rev., 2009, 38:1450-1459  doi: 10.1039/b807080f

    19. [19]

      Wang C C, Du X D, Li J, et al. Appl. Catal. B, 2016, 193:198-216  doi: 10.1016/j.apcatb.2016.04.030

    20. [20]

      Wang C C, Li J R, Lü X L, et al. Energy Environ. Sci., 2014, 7(9):2831-2867  doi: 10.1039/C4EE01299B

    21. [21]

      Wang X S, Ma S, Sun D, Parkin S, et al. J. Am. Chem. Soc., 2006, 128(51):16474-16475  doi: 10.1021/ja066616r

    22. [22]

      Shultz A M, Farha O K, Hupp J T, et al. J. Am. Chem. Soc. 2009, 131(12):4024-4025

    23. [23]

      Horcajada P, Chalati T, Serre C, et al. Nat. Mater., 2010, 9(2):172-178  doi: 10.1038/nmat2608

    24. [24]

      Zheng H, Zhang Y, Liu L, et al. J. Am. Chem. Soc., 2016, 138(3):962-968  doi: 10.1021/jacs.5b11720

    25. [25]

      Wang X L, Luan J, Sui F F, et al. Cryst. Growth Des., 2013, 13(8):3561-3576  doi: 10.1021/cg400538c

    26. [26]

      Gole B, Bar A K, Mukherjee P S. Chem. Commun., 2011, 47(44):12137-12139  doi: 10.1039/c1cc15594f

    27. [27]

      Yan W, Wang L, Yang X K, et al. Dalton Trans., 2016, 45(11):4518-4521  doi: 10.1039/C5DT04844C

    28. [28]

      Hou Y N, Xing Y H, Bai F Y, et al. Spectrochim. Acta A, 2014, 123(7):267-272

    29. [29]

      Gomez-Aguirre L C, Pato-Doldan B, Mira J, et al. J. Am. Chem. Soc., 2015, 138(4):1122-1125

    30. [30]

      Wu Y P, Li D S, Duan Y P, et al. Inorg. Chem. Commun., 2013, 36:137-140  doi: 10.1016/j.inoche.2013.08.039

    31. [31]

      Chen Y Q, Liu S J, Li Y W, et al. Cryst. Growth Des., 2012, 12(12):5426-5431

    32. [32]

      WANG Rui-Ying, ZHANG Chao-Yan, WANG Shu-Ping, et al. Prog. Chem., 2015, 27(7):945-952

    33. [33]

      Wang C C, Ho Y S. Scientometrics, 2016, 109(1):481-513  doi: 10.1007/s11192-016-1986-2

    34. [34]

      XIE Sheng-Ming, YUAN Li-Ming. Prog. Chem., 2013, 25(10):1763-1770

    35. [35]

      TONG Mian-Man, ZHAO Xu-Dong, XIE Li-Ting, et al. Prog. Chem., 2012, 24(9):1646-1655

    36. [36]

      Gadipelli S, Guo Z X. Chem. Mater., 2014, 26(22):6333-6338  doi: 10.1021/cm502399q

    37. [37]

      Yoo Y, Varela-Guerrero V, Jeong H K. Langmuir, 2011, 27(6):2652-2657  doi: 10.1021/la104775d

    38. [38]

      Taylor J M, Vaidhyanathan R, Iremonger S S, et al. J. Am. Chem. Soc., 2012, 134(35):14338-14340  doi: 10.1021/ja306812r

    39. [39]

      Decoste J B. J. Mater. Chem., 2013, 1(18):5642-5650

    40. [40]

      Peterson G W, Decoste J B, Fatollahi-Fard F, et al. Ind. Eng. Chem. Res., 2013, 53(2):701-707

    41. [41]

      Kim J, Kim S N, Jang H G, et al. Appl. Catal. A:Gen., 2013, 453(6):175-180

    42. [42]

      Cavka J H, Jakobsen S, Olsbye U, et al. J. Am. Chem. Soc., 2008, 130(42):13850-13851  doi: 10.1021/ja8057953

    43. [43]

      Wang B, Lü X L, Feng D W, et al. J. Am. Chem. Soc., 2016, 138(19):6204-6216  doi: 10.1021/jacs.6b01663

    44. [44]

      Bai Y, Dou Y, Xie L H, et al. Chem. Soc. Rev., 2016, 47(22):2327-2367

    45. [45]

      Kandiah M, Nilsen M H, Usseglio S, et al. Chem. Mater., 2010, 22(24):6632-6640  doi: 10.1021/cm102601v

    46. [46]

      Morris W, Doonan C J, Yaghi O M. Inorg. Chem., 2011, 50(15):6853-6855  doi: 10.1021/ic200744y

    47. [47]

      Min K, Cahill J F, Su Y, et al. Chem. Sci., 2012, 3(1):126-130  doi: 10.1039/C1SC00394A

    48. [48]

      Li Y A, Zhao C W, Zhu N X, et al. Chem. Commun., 2015, 51(100):17672-17675  doi: 10.1039/C5CC07783D

    49. [49]

      Kutzscher C, Nickerl G, Senkovska I, et al. Chem. Mater., 2016, 28(8):2573-2580  doi: 10.1021/acs.chemmater.5b04575

    50. [50]

      HAN Yi-Tong, LIU Min, LI Ke-Yan, et al. Appl. Chem., 2016, 33(4):367-378  doi: 10.11944/j.issn.1000-0518.2016.04.150439

    51. [51]

      Klinowski J, Paz F A A, Silva P, et al. Dalton Trans., 2011, 40(23):321-330

    52. [52]

      Deshpande M S, Kumbhar A S, Puranik V G, et al. Cryst. Growth Des., 2006, 6(3):743-748  doi: 10.1021/cg0505719

    53. [53]

      Zeng Q, Wu D, Ma H, et al. CrystEngComm, 2006, 8(2):189-201  doi: 10.1039/b516212b

    54. [54]

      Tomar K, Rajak R, Sanda S, et al. Cryst. Growth Des., 2015, 15(6):2732-2741  doi: 10.1021/acs.cgd.5b00056

    55. [55]

      Pachfule P, Das R, Poddar P, et al. Cryst. Growth Des., 2011, 11(4):1215-1222  doi: 10.1021/cg101414x

    56. [56]

      Choi S, Kim T, Ji H, et al. J. Am. Chem. Soc., 2016, 138(43):14434-14440  doi: 10.1021/jacs.6b08821

    57. [57]

      Hausdorf S, Baitalow F, Seidel J, et al. J. Phys. Chem. A, 2007, 111(20):4259-4266  doi: 10.1021/jp0708291

    58. [58]

      Li H, Wei S, Zhao K, et al. Inorg. Chem., 2012, 51(17):9200-9207  doi: 10.1021/ic3002898

    59. [59]

      Crees R S, Cole M L, Hanton L R, et al. Inorg. Chem., 2010, 49(4):1712-1719  doi: 10.1021/ic9021118

    60. [60]

      Jhung S H, Lee J H, Yoon J W, et al. Adv. Mater., 2006, 19(1):121-124

    61. [61]

      Albuquerque G H, Herman G S. Cryst. Growth Des., 2017, 17(1):156-162  doi: 10.1021/acs.cgd.6b01398

    62. [62]

      Bux H, Liang F, Li Y, et al. J. Am. Chem. Soc., 2009, 131(44):16000-16001  doi: 10.1021/ja907359t

    63. [63]

      Liang W, Babarao R, D'Alessandro D M. Inorg. Chem., 2013, 52(22):12878-12880  doi: 10.1021/ic4024234

    64. [64]

      Sahu R K, Ray A K, Mishra T, et al. Cryst. Growth Des., 2008, 8(10):3754-3760  doi: 10.1021/cg8003883

    65. [65]

      Son W J. Chem. Commun., 2008, 47(47):6336-6338

    66. [66]

      Carson C G, Brown A J, Sholl D S, et al. Cryst. Growth Des., 2011, 11(10):4505-4510  doi: 10.1021/cg200728b

    67. [67]

      Qiu L G, Li Z Q, Wu Y, et al. Chem. Commun., 2008, 31(31):3642-3644

    68. [68]

      Jung D W, Yang D A, Kim J, et al. Dalton Trans., 2010, 39(11):2883-2887  doi: 10.1039/b925088c

    69. [69]

      Joaristi A M, Juanalcañiz J, Serracrespo P, et al. Cryst. Growth Des., 2012, 12(7):3489-3498  doi: 10.1021/cg300552w

    70. [70]

      Mueller U, Schubert M, Teich F, et al. J. Mater. Chem., 2006, 16:626-636  doi: 10.1039/B511962F

    71. [71]

      Li M, Dinc M. J. Am. Chem. Soc., 2011, 133(33):12926-12929  doi: 10.1021/ja2041546

    72. [72]

      Dario B, Marco C, Anna J, et al. Angew. Chem. Int. Ed., 2006, 45(1):142-146  doi: 10.1002/(ISSN)1521-3773

    73. [73]

      Julien P A, Uarevi K, Katsenis A D, et al. J. Am. Chem. Soc., 2016, 138(9):2929-2932  doi: 10.1021/jacs.5b13038

    74. [74]

      Klimakow M, Klobes P, Thünemann A F, et al. Chem. Mater., 2010, 22(18):5216-5221  doi: 10.1021/cm1012119

    75. [75]

      Chen Y, Li S, Pei X, et al. Angew. Chem. Int. Ed., 2016, 55(10):3419-3423  doi: 10.1002/anie.201511063

    76. [76]

      Ameloot R, Stappers L, Fransaer J, et al. Chem. Mater., 2009, 21(13):2580-2582  doi: 10.1021/cm900069f

    77. [77]

      Denny M S, Cohen S M. Angew. Chem. Int. Ed., 2015, 54(31):9029-9032  doi: 10.1002/anie.201504077

    78. [78]

      Ahrenholtz S R, Epley C C, Morris A J. J. Am. Chem. Soc., 2014, 136(6):2464-2472  doi: 10.1021/ja410684q

    79. [79]

      Zhu Q L, Xu Q. Chem. Soc. Rev., 2014, 43(16):5468-5512  doi: 10.1039/C3CS60472A

    80. [80]

      He L, Liu Y, Liu J, et al. Angew. Chem. Int. Ed., 2013, 52(13):3741-3745  doi: 10.1002/anie.201209903

    81. [81]

      López-Maya E, Montoro C, Rodríguez-Albelo L M, et al. Angew. Chem. Int. Ed., 2015, 54(23):6790-6794  doi: 10.1002/anie.201502094

    82. [82]

      Petit C, Mendoza B, Bandosz T J. Langmuir, 2010, 26(19):15302-15309  doi: 10.1021/la1021092

    83. [83]

      Zhao Y, Seredych M, Zhong Q, et al. ACS Appl. Mater. Interfaces, 2013, 5(11):4951-4959  doi: 10.1021/am4006989

    84. [84]

      Shearer G C, Forselv S, Chavan S, et al. Top. Catal., 2013, 56(9/10):770-782

    85. [85]

      Takaaki T, Shuhei F, Yohei T, et al. Angew. Chem. Int. Ed., 2009, 48(26):4739-4743  doi: 10.1002/anie.v48:26

    86. [86]

      Schaate A, Roy P, Godt A, et al. Chem. Eur. J., 2011, 17(24):6643-6651

    87. [87]

      Larabi C, Quadrelli E A. Eur. J. Inorg. Chem., 2012, 2012(18):3014-3022  doi: 10.1002/ejic.201200033

    88. [88]

      Lu C M, Liu J, Xiao K, et al. Chem. Eng. J., 2010, 156(2):465-470

    89. [89]

      Ni Z, Masel R I. J. Am. Chem. Soc., 2006, 128(38):12394-12395  doi: 10.1021/ja0635231

    90. [90]

      Babu R, Roshan R, Kathalikkattil A C, et al. ACS Appl. Mater. Interfaces, 2016, 8(49):33723-33731  doi: 10.1021/acsami.6b12458

    91. [91]

      Li Y, Liu Y, Gao W, et al. CrystEngComm, 2014, 16(30):7037-7042  doi: 10.1039/C4CE00526K

    92. [92]

      Antonio D L H, Angel D O, Andres M. Chem. Soc. Rev., 2005, 34(21):164-178

    93. [93]

      Taddei M, Dau P V, Cohen S M, et al. Dalton Trans., 2015, 44(31):14019-14026  doi: 10.1039/C5DT01838B

    94. [94]

      Katsenis A D, Puškaric A, Štrukil V, et al. Nat. Commun., 2015, 6:6662(8 pages)

    95. [95]

      Tomislav F. Encyclopedia of Inorganic and Bioinorganic Chemistry. New York:John Wiley and Sons, Inc., 2014.

    96. [96]

      Crawford D E, Casaban J. Adv. Mater., 2016, 28(27):5747-5754  doi: 10.1002/adma.v28.27

    97. [97]

      Uarevi K, Wang T C, Moon S Y, et al. Chem. Commun., 2015, 52(10):2133-2136

    98. [98]

      Batten M P, Rubio-Martinez M, Hadley T, et al. Curr. Opin. Chem. Eng., 2015, 8:55-59  doi: 10.1016/j.coche.2015.02.001

    99. [99]

      Taddei M, Steitz D A, Van Bokhoven J A, et al. Chem. Eur. J., 2016, 22(10):3245-3249

    100. [100]

      Rubiomartinez M, Batten M P, Polyzos A, et al. Sci. Rep., 2014, 4:5443

    101. [101]

      Campagnol N, Vanassche T, Boudewijns T, et al. J. Mater. Chem. A, 2013, 1(19):5827-5830  doi: 10.1039/c3ta10419b

    102. [102]

      Shekhah O, Liu J, Fischer R A, et al. Chem. Soc. Rev., 2011, 40:1081-1106  doi: 10.1039/c0cs00147c

    103. [103]

      Shah M, Mccarthy M C, Sachdeva S, et al. Ind. Eng. Chem. Res., 2012, 51(5):2179-2199  doi: 10.1021/ie202038m

    104. [104]

      Miyamoto M, Kohmura S, Iwatsuka H, et al. CrystEngComm, 2015, 17(18):3422-3425  doi: 10.1039/C5CE00462D

    105. [105]

      Fei H, Pullen S, Wagner A, et al. Chem. Commun., 2014, 51(1):66-69

    106. [106]

      Stassen I, Styles M, Assche T V, et al. Chem. Mater., 2015, 27(5):76-78

    107. [107]

      Nguyen H G T, Mao L, Peters A W, et al. Catal. Sci. Technol., 2015, 5(9):4444-4451  doi: 10.1039/C5CY00825E

    108. [108]

      Shen L, Luo M, Liu Y, et al. Appl. Catal. B, 2015, 166-167:445-453  doi: 10.1016/j.apcatb.2014.11.056

    109. [109]

      Tan Y, Zhang W, Gao Y, et al. RSC Adv., 2015, 5(23):17601-17605  doi: 10.1039/C4RA11896K

    110. [110]

      Zhang W, Lu G, Cui C, et al. Adv. Mater., 2014, 26(24):4056-4060  doi: 10.1002/adma.v26.24

    111. [111]

      Ren J, Segakweng T, Langmi H, et al. Int. J. Mater. Res., 2014, 105(5):516-519  doi: 10.3139/146.111047

    112. [112]

      Katz M J, Brown Z J, Colón Y J, et al. Chem. Commun., 2013, 49(82):9449-9451  doi: 10.1039/c3cc46105j

    113. [113]

      Rechac V L, Cirujano F G, Corma A. Eur. J. Inorg. Chem., 2016, 2016(27):4512-4516  doi: 10.1002/ejic.201600372

    114. [114]

      Sun D, Liu W, Qiu M, et al. Chem. Commun., 2014, 51(11):2056-2059

    115. [115]

      Panchenko V N, Matrosova M M, Jeon J, et al. J. Catal., 2014, 316(3):251-259

    116. [116]

      Žunkovi E, Mazaj M, Mali G, et al. J. Solid State Chem., 2015, 225:209-215  doi: 10.1016/j.jssc.2014.12.033

    117. [117]

      Shen L, Liang R, Luo M, et al. Phys. Chem. Chem. Phys., 2014, 17(1):117-121

    118. [118]

      Luan Y, Qi Y, Gao H, et al. J. Mater. Chem. A, 2014, 2(48):20588-20596  doi: 10.1039/C4TA04311A

    119. [119]

      Huang Y, Qin W, Li Z, et al. Dalton Trans., 2012, 41(31):9283-9285  doi: 10.1039/c2dt30950e

    120. [120]

      Shen L, Liang S, Wu W, et al. J. Mater. Chem., 2013, 1(37):11473-11482

    121. [121]

      Lin R, Shen L, Ren Z, et al. Chem. Commun., 2014, 50(62):8533-8535  doi: 10.1039/C4CC01776E

    122. [122]

      Leus K, Concepcion P, Vandichel M, et al. RSC Adv., 2015, 5(34):22334-22342

    123. [123]

      Yang X L, Qiao L M, Dai W L. Microporous Mesoporous Mater., 2015, 211:73-81  doi: 10.1016/j.micromeso.2015.02.035

    124. [124]

      DeCoste J B, Peterson G W, Jasuja H, et al. J. Mater. Chem. A, 2013, 1(18):5642-5650  doi: 10.1039/c3ta10662d

    125. [125]

      Ko N, Hong J, Sung S, et al. Dalton Trans., 2015, 44(5):2047-2051  doi: 10.1039/C4DT02582B

    126. [126]

      Peterson G W, Moon S Y, Wagner G W, et al. Inorg. Chem., 2015, 54(20):9684-9686  doi: 10.1021/acs.inorgchem.5b01867

    127. [127]

      Li Y A, Yang S, Liu Q K, et al. Chem. Commun., 2016, 52(39):6517-6520  doi: 10.1039/C6CC01194B

    128. [128]

      Yang Q, Guillerm V, Ragon F, et al. Chem. Commun., 2012, 48(79):9831-9833  doi: 10.1039/c2cc34714h

    129. [129]

      Piscopo C G, Polyzoidis A, Schwarzer M, et al. Microporous Mesoporous Mater., 2015, 208:30-35  doi: 10.1016/j.micromeso.2015.01.032

    130. [130]

      Aguilera-Sigalat J, Bradshaw D. Chem. Commun., 2014, 50:4711-4713  doi: 10.1039/c4cc00659c

    131. [131]

      Valenzano L, Civalleri B, Chavan S, et al. Chem. Mater., 2011, 23(7):1700-1718  doi: 10.1021/cm1022882

    132. [132]

      Yot P G, Yang K, Ragon F, et al. Dalton Trans., 2015, 45(2):226-227

    133. [133]

      Mondloch J E, Katz M J, Planas N, et al. Chem. Commun., 2014, 50(64):8944-8946  doi: 10.1039/C4CC02401J

    134. [134]

      Wu R, Qian X, Zhou K, et al. J. Mater. Chem. A, 2013, 1(45):14294-14299  doi: 10.1039/c3ta13114a

    135. [135]

      Zhang X, Han Q, Ding M. RSC Adv., 2015, 5(2):1043-1050  doi: 10.1039/C4RA12263A

    136. [136]

      Pinto M L, Dias S, Pires J. ACS Appl. Mater. Interfaces, 2013, 5(7):2360-2363  doi: 10.1021/am303089g

    137. [137]

      Cao Y, Zhao Y, Lü Z, et al. J. Ind. Eng. Chem., 2015, 27(25):102-107

    138. [138]

      Manna K, Ji P, Lin Z, et al. Nat. Commun., 2016, 7:12610-12621

    139. [139]

      Cheng P, Hu Y H. Int. J. Energy Res., 2016, 40(6):846-852  doi: 10.1002/er.v40.6

    140. [140]

      Shearier E, Cheng P, Bao J, et al. RSC Adv., 2016, 6(5):4128-4135  doi: 10.1039/C5RA24336J

    141. [141]

      Vermoortele F, Bueken B, Le B G, et al. J. Am. Chem. Soc., 2013, 135(31):11465-11468  doi: 10.1021/ja405078u

    142. [142]

      Cai G R, Jiang H L. Angew. Chem. Int. Ed., 2017, 129:578-582  doi: 10.1002/ange.201610914

    143. [143]

      Wu H, Yong S C, Krungleviciute V, et al. J. Am. Chem. Soc., 2013, 135(28):10525-10532  doi: 10.1021/ja404514r

    144. [144]

      Trickett C A, Gagnon K J, Lee S, et al. Angew. Chem. Int. Ed., 2015, 127:11314-11319  doi: 10.1002/ange.201505461

    145. [145]

      Ranocchiari M, Ja V B. Phys. Chem. Chem. Phys., 2011, 13(14):6388-6396  doi: 10.1039/c0cp02394a

    146. [146]

      Farrusseng D, Aguado S, Pinel C. Angew. Chem. Int. Ed., 2009, 121(41):7638-7649  doi: 10.1002/ange.v121:41

    147. [147]

      Kim S N, Lee Y R, Hong S H, et al. Catal. Today, 2015, 245:54-60  doi: 10.1016/j.cattod.2014.05.041

    148. [148]

      Chung Y M, Kim H Y, Ahn W S. Catal. Lett., 2014, 144(5):817-824  doi: 10.1007/s10562-014-1242-4

    149. [149]

      Hinde C S, Webb W R, Chew B K, et al. Chem. Commun., 2016, 52(39):6557-6560  doi: 10.1039/C6CC02169G

    150. [150]

      DAI Tian-Lin, ZHANG Yan-Mei, CHU Gang, et al. Chinese J. Inorg. Chem., 2016, 32(4):609-616
       

    151. [151]

      Yi X C, Xi F G, Qi Y, et al. RSC Adv., 2014, 5(2):893-900

    152. [152]

      Hester P, Xu S, Liang W, et al. J. Catal., 2016, 340:85-94  doi: 10.1016/j.jcat.2016.05.003

    153. [153]

      Silva C G, Corma A, García H. J. Mater. Chem., 2010, 20(16):3141-3156  doi: 10.1039/b924937k

    154. [154]

      Wang J L, Wang C, Lin W. ACS Catal., 2012, 2(2):2630-2640

    155. [155]

      Zeng L, Guo X, He C, et al. ACS Catal., 2016, 6(11):7935-7947  doi: 10.1021/acscatal.6b02228

    156. [156]

      Wang C, Xie Z, Dekrafft K E, et al. J. Am. Chem. Soc., 2011, 133(34):13445-13454  doi: 10.1021/ja203564w

    157. [157]

      Deenadayalan M S, Sharma N, Verma P K, et al. Inorg. Chem., 2016, 55(11):5320-5327  doi: 10.1021/acs.inorgchem.6b00296

    158. [158]

      Dhakshinamoorthy A, Asiri A M, García H. Angew. Chem. Int. Ed., 2016, 55(18):5414-5445  doi: 10.1002/anie.201505581

    159. [159]

      Zhang T, Lin W. Chem. Soc. Rev., 2014, 43(16):5982-5993  doi: 10.1039/C4CS00103F

    160. [160]

      Wang C C, Zhang Y Q, Li J, et al. J. Mol. Struct., 2015, 1083:127-136  doi: 10.1016/j.molstruc.2014.11.036

    161. [161]

      Sun D, Fu D Y, Liu W, et al. Chem. Eur. J., 2013, 19(42):14279-14285  doi: 10.1002/chem.201301728

    162. [162]

      Lee Y, Kim S, Kang J K, et al. Chem. Commun., 2015, 51(26):5735-5738  doi: 10.1039/C5CC00686D

    163. [163]

      Shen L, Liang S, Wu W, et al. Dalton Trans., 2013, 42(37):13649-13657  doi: 10.1039/c3dt51479j

    164. [164]

      Fujishima A, Rao T N, Tryk D A. J. Photochem. Photobiol. C, 2000, 1(1):1-21  doi: 10.1016/S1389-5567(00)00002-2

    165. [165]

      Wang L, Li X, Wei T, et al. J. Hazard. Mater., 2013, 244-245(2):681-688

    166. [166]

      Shen L, Wu W, Liang R, et al. Nanoscale, 2013, 5(19):9374-9382  doi: 10.1039/c3nr03153e

    167. [167]

      Toyao T, Saito M, Yu H, et al. Catal. Sci. Technol., 2014, 4(3):625-628  doi: 10.1039/c3cy00917c

    168. [168]

      Pu S, Xu L, Sun L, et al. Inorg. Chem. Commun., 2015, 52:50-52  doi: 10.1016/j.inoche.2014.12.015

    169. [169]

      Li S, Wang X, He Q, et al. Chin. J. Catal., 2016, 37(3):367-377  doi: 10.1016/S1872-2067(15)61033-6

    170. [170]

      ZHOU Xin, FENG Tao, GAO Shu-Tao, et al. Chinese J. Inorg. Chem., 2016, 32(5):769-776
       

    171. [171]

      LIU Fei-Yang, PENG Zhen, WANG Jie-Yi, et al. Chin. J. Environ. Eng., 2016, 10(10):5682-5688  doi: 10.12030/j.cjee.201505169

    172. [172]

      Cláudia G S, Ignacio L, Avelino C, et al. Chem. Eur. J., 2010, 16(36):11133-11138

    173. [173]

      Zhou J J, Wang R, Liu X L, et al. Appl. Surf. Sci., 2015, 346(4):278-283

    174. [174]

      Bu Y, Li F, Zhang Y, et al. RSC Adv., 2016, 6(46):40560-40566  doi: 10.1039/C6RA05522B

    175. [175]

      Yuan Y P, Yin L S, Cao S W, et al. Appl. Catal. B, 2015, 168-169:572-576  doi: 10.1016/j.apcatb.2014.11.007

    176. [176]

      Youngblood W J, Lee S H, Maeda K, et al. Acc. Chem. Res., 2009, 41(12):1966-1973

    177. [177]

      Luo W, Li Z, Yu T, et al. J. Phys. Chem., C, 2012, 116(8):5076-5081  doi: 10.1021/jp210207q

    178. [178]

      Wang Y, Hong J, Zhang W, et al. Catal. Sci. Technol., 2013, 3(7):1703-1711  doi: 10.1039/c3cy20836b

    179. [179]

      Liu M, Li F, Sun Z, et al. Chem. Commun., 2014, 50(75):11004-11007  doi: 10.1039/C4CC04653F

    180. [180]

      Li H, Eddaoudi M, O'Keeffe M, et al. Nature, 1999, 402(6757):276-279

    181. [181]

      Yaghi O M, Li G, Li H. Nature, 1995, 378(6558):703-706  doi: 10.1038/378703a0

    182. [182]

      Li J R, Kuppler R J, Zhou H C. Chem. Soc. Rev., 2009, 38(29):1477-1504

    183. [183]

      Biswas S, Voort P V D. Eur. J. Inorg. Chem., 2013, 2013(12):2154-2160  doi: 10.1002/ejic.201201228

    184. [184]

      Chevreau H, Liang W, Kearley G J, et al. J. Phys. Chem. C, 2015, 119(13):6980-6987  doi: 10.1021/jp512501k

    185. [185]

      Hu Z, Zhang K, Zhang M, et al. ChemSusChem, 2014, 7(10):2791-2955  doi: 10.1002/cssc.201402378

    186. [186]

      Li L J, Liao P Q, He C T, et al. J. Mater. Chem. A, 2015, 3:21849-21855  doi: 10.1039/C5TA05997F

    187. [187]

      Hu Z, Khurana M, Yong H S, et al. Chem. Eng. Sci., 2015, 124(1):61-69

    188. [188]

      Smith S J, Ladewig B P, Hill A J, et al. Sci. Rep., 2015, 5:7823-7823  doi: 10.1038/srep07823

    189. [189]

      Ethiraj J, Albanese E, Civalleri B, et al. ChemSusChem, 2014, 7(12):3382-3388  doi: 10.1002/cssc.v7.12

    190. [190]

      Arrua R D, Peristyy A, Nesterenko P N, et al. Analyst, 2017, 142:517-524  doi: 10.1039/C6AN02344D

    191. [191]

      Zhao Y, Wu H, Emge T J, et al. Chem. Eur. J., 2011, 17(18):5101-5109

    192. [192]

      Liang W B, Campbell J C, Florence R, et al. Dalton Trans., 2016, 45:4496-4500  doi: 10.1039/C6DT00189K

    193. [193]

      Abid H R, Ang H M, Wang S. Nanoscale, 2012, 4(10):3089-3094  doi: 10.1039/c2nr30244f

    194. [194]

      Hu Z G, Nalaparaju A, Peng Y W, et al. Inorg. Chem., 2016, 55(3):1134-1141  doi: 10.1021/acs.inorgchem.5b02312

    195. [195]

      Ren J, Langmi H W, North B C, et al. Int. J. Hydrogen Energy, 2014, 39(2):890-895  doi: 10.1016/j.ijhydene.2013.10.087

    196. [196]

      Abid H R, Tian H, Ang H M, et al. Chem. Eng. J., 2012, 187(2):415-420

    197. [197]

      Ren J, Musyoka N M, Langmi H W, et al. Int. J. Hydrogen Energy, 2014, 39(27):14912-14917  doi: 10.1016/j.ijhydene.2014.07.056

    198. [198]

      Ramsahye N A, Gao J, Jobic H, et al. J. Phys. Chem. C, 2014, 118(47):27470-27482  doi: 10.1021/jp509672c

    199. [199]

      He Q Q, Chen Q, Lü M M, et al. Chin. J. Chem. Eng., 2014, 22(z1):1285-1290

    200. [200]

      Zhao X, Liu D, Huang H, et al. Microporous Mesoporous Mater., 2014, 185(185):72-78

    201. [201]

      Seo Y S, Khan N A, Jhung S H. Chem. Eng. J., 2015, 270:22-27

    202. [202]

      REN Tian-Hao, YANG Zhi-Lin, GUO Lin, et al. J. Environ. Sci., 2016, 37(6):2202-2210

    203. [203]

      Peterson G W, Mahle J J, Decoste J B, et al. Angew. Chem. Int. Ed., 2016, 55(21):6235-6238  doi: 10.1002/anie.201601782

    204. [204]

      Decoste J B, Demasky T J, Katz M J, et al. New J. Chem., 2015, 39(4):2396-2399  doi: 10.1039/C4NJ02093F

    205. [205]

      Zhu X, Li B, Yang J, et al. ACS Appl. Mater. Interfaces, 2015, 7(1):223-231  doi: 10.1021/am5059074

    206. [206]

      Liu X, Demir N K, Wu Z, et al. J. Am. Chem. Soc., 2015, 137(22):6999-7002  doi: 10.1021/jacs.5b02276

    207. [207]

      Vitillo J G, Regli L, Chavan S, et al. J. Am. Chem. Soc., 2008, 130(26):8386-8396  doi: 10.1021/ja8007159

    208. [208]

      Rallapalli P B S, Raj M C, Patil D V, et al. Int. J. Energy Res., 2013, 37(7):746-753  doi: 10.1002/er.v37.7

    209. [209]

      Yang S J, Choi J Y, Chae H K, et al. Chem. Mater., 2009, 21(9):1893-1897  doi: 10.1021/cm803502y

    210. [210]

      Férey G, Mellot-Draznieks C, Serre C, et al. Science, 2005, 309(5743):2040-2042  doi: 10.1126/science.1116275

    211. [211]

      Hedegaard M J, Arvin E, Corfitzen C B, et al. Sci. Total Environ., 2014, 499:257-264  doi: 10.1016/j.scitotenv.2014.08.052

    212. [212]

      Ignatowicz K. J. Hazard. Mater., 2009, 169(1/2/3):953-957

    213. [213]

      Shahat A, Hassan H M A, Azzazy H M E. Anal. Chim. Acta, 2013, 793:90-98  doi: 10.1016/j.aca.2013.07.012

    214. [214]

      Greim H. The MAK Collection for Occupational Health and Safety. New York:Wiley, 1999:12

    215. [215]

      Orellanatavra C, Baxter E F, Tian T, et al. Chem. Commun., 2015, 51(73):13878-13881  doi: 10.1039/C5CC05237H

    216. [216]

      Tai S, Zhang W, Zhang J, et al. Microporous Mesoporous Mater., 2016, 220:148-154  doi: 10.1016/j.micromeso.2015.08.037

    217. [217]

      Sun C Y, Qin C, Wang C G, et al. Adv. Mater., 2011, 23(47):5629-5632  doi: 10.1002/adma.v23.47

    218. [218]

      Nazari M, Rubio-Martinez M, Tobias G, et al. Adv. Funct. Mater., 2016, 26(19):3244-3249  doi: 10.1002/adfm.v26.19

    219. [219]

      Zhang H T, Zhang J W, Huang G, et al. Chem. Commun., 2014, 50(81):12069-12072  doi: 10.1039/C4CC05571C

    220. [220]

      Liu S, Yue Z, Liu Y. Dalton Trans., 2015, 44(29):12976-12980  doi: 10.1039/C5DT01667C

    221. [221]

      Gao Y, Wu J, Zhang W, et al. Mater. Lett., 2014, 128(10):208-211

    222. [222]

      Lee D Y, Yoon S Y, Shrestha N K, et al. Microporous Mesoporous Mater., 2012, 153(3):163-165

  • 加载中
    1. [1]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    2. [2]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    3. [3]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    4. [4]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    7. [7]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    8. [8]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    9. [9]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    10. [10]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    11. [11]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    12. [12]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    13. [13]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    14. [14]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    15. [15]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    16. [16]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    17. [17]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    18. [18]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    19. [19]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    20. [20]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

Metrics
  • PDF Downloads(1192)
  • Abstract views(44683)
  • HTML views(15097)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return