Citation: HAN Wang-Kang, TIAN Lei, XU Zong-Li, ZHU Wei, LI Zhi-Hua, LI Tao, GU Zhi-Guo, LI Zai-Jun. Self-Sorting of Binuclear Schiff-Base Complexes under Solvent-Free Grinding Conditions[J]. Chinese Journal of Inorganic Chemistry, ;2017, 33(4): 550-559. doi: 10.11862/CJIC.2017.069 shu

Self-Sorting of Binuclear Schiff-Base Complexes under Solvent-Free Grinding Conditions

  • Corresponding author: GU Zhi-Guo, zhiguogu@jiangnan.edu.cn
  • Received Date: 10 November 2016
    Revised Date: 18 January 2017

Figures(5)

  • Three binuclear iron (Ⅱ) imidazole Schiff-base complexes were constructed by one-pot multicomponent assembly of di (imidazole aldehyde)(A~C), 2-aminoethyl (ethyl) amine (D) and Fe (OTf)2 under solvent-free grinding conditions. X-ray crystallography revealed that the three complexes crystallized in different space groups of Cmca for 1, P21/c for 2~3. And the molecular structures of 1~3 all display Fe2L2 arrangement. In complexes 1~3, two ligand strands wrap around two Fe2+ ions and the Fe2+ ions are coordinated to chelating moieties from two imidazole nitrogen atoms and four amine nitrogen atoms, resulting in the pseudo octahedral FeN6 coordination geometry. Taking advantage of the facile approach above, we then investigated the discrimination abilities of the multicomponent assembly process under the solvent-free condition when different components were mixed together (a mixture of D, two kinds of di (imidazole aldehyde) of A~C and Fe (OTf)2). In this assemble system, combinations[D+A+B+Fe2+] or[D+A+C+Fe2+] adopt narcissistic self-sorting with only two species, while social self-sorting took place in the combination[D+B+C+Fe2+] forming the single heteromer 4, which was composed of two different ligands and exhibited Fe2LL' arrangement. The structure of 4 was further verified by the X-ray analysis by preparing the single crystal of the heteromer 4. To compare the efficiency of solvent-free grinding solid self-sorting against the solution self-sorting, the conventional solution-based self-sorting reactions were also performed using the same starting materials with equal amount. In consequence of the complexity of 1H NMR peaks of mixture, the selectivity is poor in solution. Overall, compared with self-sorting in solution, the solvent-free grinding self-sorting is more efficient due to the certain restrictions of molecular movement.
  • 加载中
    1. [1]

      (a) Cook T R, Stang P J. Chem. Rev., 2015, 115(15):7001-7045
      (b) McConnell A J, Wood C S, Neelakandan P P, et al. Chem. Rev., 2015, 115(15):7729-7793
      (c) Castilla A M, Ramsay W J, Nitschke J R. Acc. Chem. Res., 2014, 47(7):2063-2073
      (d) Ward M D, Raithby P R. Chem. Soc. Rev., 2013, 42(4):1619-1636
      (e) Giuseppone N. Acc. Chem. Res., 2012, 45(12):2178-2188
      (f) Nitschke J R. Acc. Chem. Res., 2007, 40(2):103-112
      (g) Smulders M M J, Riddell I A, Browne C, et al. Chem. Soc. Rev., 2013, 42(4):1728-1754

    2. [2]

      (a) He Z, Jiang W, Schalley C A. Chem. Soc. Rev., 2015, 44(3):779-789
      (b) Yang L, Tan X, Wang Z, et al. Chem. Rev., 2015, 115(15):7196-7239
      (c) Herrmann A. Chem. Soc. Rev., 2014, 43(6):1899-1933
      (d) Zheng B, Wang F, Dong S, et al. Chem. Soc. Rev., 2012, 41(5):1621-1636
      (e) Chakrabarty R, Mukherjee P S, Stang P J. Chem. Rev., 2011, 111(11):6810-6918
      (f) Maeda C, Kamada T, Aratani N, et al. Coord. Chem. Rev., 2007, 251(21):2743-2752

    3. [3]

      (a) Saha M L, De S, Pramanik S, et al. Chem. Soc. Rev., 2013, 42(16):6860-6909
      (b) Sun Q F, Iwasa J, Ogawa D, et al. Science, 2010, 328(5982):1144-1147
      (c) Holloway L R, Young M C, Beran G J O, et al. Chem. Sci., 2015, 6(8):4801-4806
      (d) Gütz C, Hovorka R, Stobe C, et al. Eur. J. Org. Chem., 2014, (1):206-216

    4. [4]

      (a) Gidron O, Jirásek M, Trapp N, et al. J. Am. Chem. Soc., 2015, 137(39):12502-12505
      (b) Gütz C, Hovorka R, Struch N, et al. J. Am. Chem. Soc., 2014, 136(33):11830-11838
      (c) Acharyya K, Mukherjee S, Mukherjee P S. J. Am. Chem. Soc., 2012, 135(2):554-557
      (d) Wang W, Zhang Y, Sun B, et al. Chem. Sci., 2014, 5(12):4554-4560
      (e) Singh A S, Sun S S. Chem. Commun., 2012, 48(59):7392-7394
      (f) Yan L L, Tan C H, Zhang G L, et al. J. Am. Chem. Soc., 2015, 137(26):8550-8555

    5. [5]

      (a) Tomimasu N, Kanaya A, Takashima Y, et al. J. Am. Chem. Soc., 2009, 131(34):12339-12343
      (b) Klotzbach S, Beuerle F. Angew. Chem. Int. Ed., 2015, 54(35):10356-10360
      (c) Benkhäuser C, Lützen A. Beilstein J. Org. Chem., 2015, 11(1):693-700
      (d) Mukhopadhyay P, Wu A, Isaacs L. J. Org. Chem., 2004, 69(19):6157-6164

    6. [6]

      Baxter P, Lehn J M, DeCian A, et al. Angew. Chem. Int. Ed., 1993, 32(1):69-72  doi: 10.1002/(ISSN)1521-3773

    7. [7]

      (a) Safont-Sempere M M, Fernández G, Wurthner F. Chem. Rev., 2011, 111(9):5784-5814
      (b) Jiménez A, Bilbeisi R A, Ronson T K, et al. Angew. Chem., Int. Ed., 2014, 53(18):4556-4560
      (c) Bloch W M, Abe Y, Holstein J J, et al. J. Am. Chem. Soc., 2016, 138(41):13750-13755

    8. [8]

      (a) Mayoral M J, Rest C, Schellheimer J, et al. Chem. Eur. J., 2012, 18(49):15607-15611
      (b) Smulders M M J, Jiménez A, Nitschke J R. Angew. Chem. Int. Ed., 2012, 51(27):6681-6685

    9. [9]

      (a) De S, Mahata K, Schmittel M. Chem. Soc. Rev., 2010, 39(5):1555-1575
      (b) Ronson T K, Roberts D A, Black S P, et al. J. Am. Chem. Soc., 2015, 137(45):14502-14512
      (c) Saha M L, Neogi S, Schmittel M. Dalton Trans., 2014, 43(10):3815-3834

    10. [10]

      (a) Giri C, Sahoo P K, Puttreddy R, et al. Chem. Eur. J., 2015, 21(17):6390-6393
      (b) Chen P N, Lai C C, Chiu S H. Org. Lett., 2011, 13(17):4660-4663

    11. [11]

      (a) Biswal B P, Chandra S, Kandambeth S, et al. J. Am. Chem. Soc., 2013, 135(14):5328-5331
      (b) Friščić T, Reid D G, Halasz I, et al. Angew. Chem. Int. Ed., 2010, 49(4):712-715
      (c) Tireli M, Kulcsár M J, Cindro N, et al. Chem. Commun., 2015, 51(38):8058-8061
      (d) Das G, Shinde D B, Kandambeth S, et al. Chem. Commun., 2014, 50(84):12615-12618
      (e) Bowmaker G A. Chem. Commun., 2013, 49(4):334-348
      (f) Loots L, Wahl H, Van Der Westhuizen L, et al. Chem. Commun., 2012, 48(94):11507-11509

    12. [12]

      Ren D H, Qiu D, Pang C Y, et al. Chem. Commun., 2015, 51(4):788-791  doi: 10.1039/C4CC08041F

    13. [13]

      SAINT-Plus, Version 6.02, Bruker Analytical X-ray System:Madison, WI, 1999.

    14. [14]

      Sheldrick G M. SADABS, Bruker Analytical X-ray Systems:Madison, WI, 1996.

    15. [15]

      (a) Sheldrick G M. SHELXTL-97, Program for X-ray Crystal Structure Solution and Refinement, University of Göttingen, Germany, 1997.
      (b) Sheldrick G M. Acta Crystallogr. Sect. A, 2008, 64(1):112-122

    16. [16]

      (a) Sluis P V D, Spek A L. Acta Crystallogr. Sect. A, 1990, A46:194-201
      (b) Müller P, Herbst-Irmer R, Spek A L, et al. Crystal Structure Refinement-a Crystallographer's Guide to SHELXL. New York:Oxford University Press, 2006:63-96

    17. [17]

      (a) Brooker S. Chem. Soc. Rev., 2015, 44(10):2880-2892
      (b) Hagiwara H, Okada S. Chem. Commun., 2016, 52(4):815-818
      (c) Qin L F, Pang C Y, Han W K, et al. Dalton Trans., 2016, 45(17):7340-7348

    18. [18]

      (a) Herber R, Casson L M. Inorg. Chem., 1986, 25(6):847-852
      (b) Zilverentant C L, Van Albada G A, Bousseksou A, et al. Inorg. Chim. Acta, 2000, 303(2):287-290
      (c) Sunatsuki Y, Kawamoto R, Fujita K, et al. Inorg. Chem., 2009, 48(18):8784-8795

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    3. [3]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    4. [4]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    5. [5]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    6. [6]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    7. [7]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    8. [8]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    9. [9]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    10. [10]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    11. [11]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    12. [12]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    13. [13]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    14. [14]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    15. [15]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    16. [16]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    17. [17]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    18. [18]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    19. [19]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    20. [20]

      Yun-Fei ZhangChun-Hui ZhangJian-Hui XuLei LiDan LiJin-Hong FanJiale GaoXin QuanQi WuYue ZouYan-Ling Liu . Enhanced degradation of florfenicol by microscale SiC/Fe: Dechlorination via hydrogenolysis. Chinese Chemical Letters, 2024, 35(7): 109385-. doi: 10.1016/j.cclet.2023.109385

Metrics
  • PDF Downloads(7)
  • Abstract views(776)
  • HTML views(68)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return