Citation: LIN Yue-Shun, ZHOU Hong-Jun, ZHOU Xin-Hua, GONG Sheng, XU Hua, CHEN Hua-Yao. Preparation and Properties of pH Value-Responsive Sustained Release System of Chlorpyrifos/Copper (Ⅱ)) Schiff Base SBA-15[J]. Chinese Journal of Inorganic Chemistry, ;2017, 33(3): 446-454. doi: 10.11862/CJIC.2017.056 shu

Preparation and Properties of pH Value-Responsive Sustained Release System of Chlorpyrifos/Copper (Ⅱ)) Schiff Base SBA-15

  • Corresponding author: ZHOU Xin-Hua, cexinhuazhou@163.com
  • Received Date: 10 November 2016
    Revised Date: 25 December 2016

Figures(10)

  • Copper Schiff base modified SBA-15(Cu-SBA-15) was prepared by post-grafting, using 3-aminopropyl triethoxysilane (APTES), salicylaldehyde and copper ions as modifying agent. The chlorpyrifos/Cu-SBA-15 (CH-Cu-SBA-15) system were prepared by impregnation method, employing chlorpyrifos as a model drug. The morphologies and structures of SBA-15, amino functionalized SBA-15(NH2-SBA-15), salicylaldehyde functionalized SBA-15(SA-SBA-15), and Cu-SBA-15 were systematically characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction assay (XRD), N2 adsorption-desorption, TGA analysis, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Meanwhile, the adsorption capacity (AC) of as-synthesized system for chlorpyrifos and sustained release performance of SBA-15 before and after modification were investigated. Besides, the sustained release behavior of CH-Cu-SBA-15 under different pH values were also discussed. The results showed that SBA-15 could be modified by APTES and salicylaldehyde, and the order structure of it was still maintained by post-grafting method. After modification of SBA-15, the AC of chlorpyrifos increased from 100 to 195 mg·g-1 with a better sustained release performance. In addition, the CH-Cu-SBA-15 system showed significant sensitivity in response to the pH value. The chlorpyrifos release rate under pH=3 was greater than pH=11 and the sustained release performance of them was relatively better than under the neutral condition. Meanwhile, their releasing curves could be described by Riger-Peppas equation indicating that the drug release was controlled by Fick diffusion.
  • 加载中
    1. [1]

      Zhao D Y, Huo Q S, Feng J L, et al. J. Am. Chem. Soc., 2014, 136(29):10546  doi: 10.1021/ja506344k

    2. [2]

      Wan M M, Li Y Y, Yang T, et al. Chemistry, 2016, 22(18): 6294-6301  doi: 10.1002/chem.v22.18

    3. [3]

      Vavsari V F, Ziarani G M, Badiei A. RSC Adv., 2015, 5(111): 91686-91707  doi: 10.1039/C5RA17780D

    4. [4]

      HE Shun, GAO Yun-Hao, WAN Hu, et al. Chinese J. Pestic. Sci., 2016, 18(4):416-423

    5. [5]

      Malekia A, Hamidia M. Expert Opin. Drug Delivery, 2016, 13(2):171-181  doi: 10.1517/17425247.2015.1111335

    6. [6]

      Momčilović M Z, Ranđelović M S, Zarubica A R, et al. Chem. Eng. J., 2013, 220:276-283  doi: 10.1016/j.cej.2012.12.024

    7. [7]

      Zhang M, Chen H, Zhu L, et al. J. Sep. Sci., 2016, 39(5):910-917  doi: 10.1002/jssc.201501129

    8. [8]

      NIE Xin, QU Feng-Yu, LI Xiao-Feng, et al. Chem. J. Chinese Universities, 2011, 32(7):1478-1482

    9. [9]

      He S, Zhang W, Li D, et al. J. Mater. Chem. B, 2013, 1(9): 1270-1278  doi: 10.1039/c2tb00234e

    10. [10]

      Sari Yilmaz M, Palantoken A, Piskin S. J. Non-Cryst. Solids, 2016, 437:80-86  doi: 10.1016/j.jnoncrysol.2016.01.020

    11. [11]

      Bahramia Z, Alireza Badieia B, Atyabic F. Chem. Eng. Res. Des., 2014, 92(7):1296-1303  doi: 10.1016/j.cherd.2013.11.007

    12. [12]

      Hwang D H, Lee D, Lee H, et al. Korean J. Chem. Eng., 2010, 27(4):1087-1092  doi: 10.1007/s11814-010-0225-4

    13. [13]

      Hashemikiaa S, Hemmatinejada N, Ahmadib E, et al. Mater. Sci. Eng. C, 2016, 59:429-437  doi: 10.1016/j.msec.2015.09.092

    14. [14]

      ZHU Xue-Cheng, SHEN Ru-Wei, ZHANG Li-Xiong. Chin. J. Catal., 2014, 35(10): 1716-1726

    15. [15]

      YU Long-Bao, XU Hu, SHI Ya-Yu, et al. Chin. J. Appl. Chem., 2013, 30(10):1163-1168

    16. [16]

      Zheng H, Wang Y, Che S. J. Phys. Chem. C, 2011, 115(34): 16803-16813  doi: 10.1021/jp203799m

    17. [17]

      Zheng H, Xing L, Cao Y, et al. Coord. Chem. Rev., 2013, 257(11/12):1933-1944

    18. [18]

      Peng Ren-Zhong. Beijing Agric., 2014(15):112  doi: 10.3969/j.issn.1000-6966.2014.15.091

    19. [19]

      Gao C, Zheng H, Xing L, et al. Chem. Mater., 2010, 22(19): 5437-5444  doi: 10.1021/cm100667u

    20. [20]

      LIN Yue-Shun, ZHOU Hong-Jun, ZHOU Xin-Hua, et al. J. Chem. Ind. Eng.(China), 2016, 67(10):4500-4507

    21. [21]

      TIAN Li, ZHOU Gong-Bing, LI Zhen-Hua, et al. Acta Phys.-Chim. Sin., 2011, 27(4):946-952

    22. [22]

      LIN Yue-Shun, ZHOU Xin-Hua, ZHOU Hong-Jun, et al. Chinese J. Pestic. Sci., 2016, 18(5):643-649

    23. [23]

      KONG Xiang-Tao, ZHOU Zhi-Ping, SHENG Wei-Chen, et al. J. Funct. Mater., 2009, 40(7):1211-1214

    24. [24]

      ZHOU Li-Hui, ZHANG Li-Zhong, LIU Hong-Lai. Chin. J. Proc. Eng., 2006, 6(3):499-502

    25. [25]

      HAO Shi-You, XIAO Qiang, ZHONG Yi-Jun, et al. Chinese J. Inorg. Chem., 2010, 26(6):982-988
       

    26. [26]

      Tang D H, Zhang W R, Wang Y F, et al. Chem. Res. Chin. Univ., 2014, 30(4):531-537  doi: 10.1007/s40242-014-4097-8

    27. [27]

      He L, Huang Y, Zhu H, et al. Adv. Funct. Mater., 2014, 24(19):2754-2763  doi: 10.1002/adfm.v24.19

    28. [28]

      YE Yu-Mei, JIANG Kai-Yong, ZHANG Ji-Liang. Mater. Sci. Technol., 2014, 22(05):124-128

    29. [29]

      LIU Fen, ZHAO Zhi-Juan, QIU Li-Mei, et al. Anal. Test. Technol. Instrum., 2009, 15(1):1-17

    30. [30]

      Chen H Y, Rui Z B, Ji H B. Ind. Eng. Chem. Res., 2014, 53(18):7629-7636  doi: 10.1021/ie5004009

    31. [31]

      Higuchi T. J. Pharm. Sci., 1961, 50(10):874-875  doi: 10.1002/jps.2600501018

    32. [32]

      Ritger P L, Peppas N A. J. Controlled Release, 1987, 5(1): 23-36  doi: 10.1016/0168-3659(87)90034-4

    33. [33]

      ZHANG Tian-Lin, WANG Jia-Jia, ZHU Cai-Yan, et al. Acta Polym. Sin., 2013, 26(9):1219-1225

  • 加载中
    1. [1]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    2. [2]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    3. [3]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    4. [4]

      Jianye KangXinyu YangXuhao YangJiahui SunYuhang LiuShutao WangWenlong Song . Carbon dots-enhanced pH-responsive lubricating hydrogel based on reversible dynamic covalent bondings. Chinese Chemical Letters, 2024, 35(5): 109297-. doi: 10.1016/j.cclet.2023.109297

    5. [5]

      Shuang LiJiayu SunGuocheng LiuShuo ZhangZhong ZhangXiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148

    6. [6]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    7. [7]

      Yan LiuYang WangJiayi ZhuXuxian SuXudong LinLiang XuXiwen Xing . Employing pH-responsive RNA triplex to control CRISPR/Cas9-mediated gene manipulation in mammalian cells. Chinese Chemical Letters, 2024, 35(9): 109427-. doi: 10.1016/j.cclet.2023.109427

    8. [8]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    9. [9]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    10. [10]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    11. [11]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

Metrics
  • PDF Downloads(1)
  • Abstract views(1201)
  • HTML views(100)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return