Citation: YANG Jia-Jia, JIANG Ke-Wang, LIN Xue-Mei, YING Zong-Rong, ZHANG Wen-Wen. Synthesis of g-C3N4/C Nanofibers by Electrospinning and Their Photodegradation Performance under Visible Light[J]. Chinese Journal of Inorganic Chemistry, ;2016, 32(12): 2088-2094. doi: 10.11862/CJIC.2016.279 shu

Synthesis of g-C3N4/C Nanofibers by Electrospinning and Their Photodegradation Performance under Visible Light

  • Corresponding author: YING Zong-Rong, 
  • Received Date: 28 March 2016
    Available Online: 9 October 2016

  • g-C3N4/C composite nanofibers were prepared via a combination process of electrospinning, preoxidation and carbonization by using g-C3N4 nanosheets and polyacrylonitrile as raw materials. Fourier transform infrared spectrometer (FTIR), X-ray diffraction (XRD), Raman spectroscopy (Raman) and scanning electron microscopy (SEM) were employed to analyze the structure and morphology of the as-synthesized nanofibers. And UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) was used to assess their visible light response. The results show that the g-C3N4/C composite nanofibers exhibit good photocatalytic degradation activity toward rhodamine B under visible light, which originates from better ability of their partially amorphous carbon matrix to reduce the combination of the photogenerated electron and hole pair. The nanofiber membrane was not embrittled into powers or small flakes during the photocatalytic degradation process under stirring conditions, maintaining its integrity from begin to end. After several recovery and photocatalysis experiments, the membrane still maintained high photodegradation rate. This study reveals that the resulting nanofibers have excellent recycling stability to photodegradate rhodamine B under visible light.
  • 加载中
    1. [1]

      [1] Wang X C, Maeda K, Thomas A, et al. Nat. Mater., 2009,8(1):76-80

    2. [2]

      [2] CHEN Bo-Cai(陈博才), SHEN Yang(沈洋), WEI Jian-Hong (魏建红). Acta Phys.-Chim. Sin.(物理化学学报), 2016,32(6):1371-1382

    3. [3]

      [3] Cui Y J. Chin. J. Catal., 2015,36(3):372-379

    4. [4]

      [4] ZHAO Xue-Guo(赵学国), HUANG Li-Qun(黄丽群), LI Jia-Ke(李家科). Chinese J. Inorg. Chem.(无机化学学报), 2015, 31(12):2343-2348

    5. [5]

      [5] Liu L, Qi Y, Lu J, et al. Appl. Catal. B:Environ., 2016,183:133-141

    6. [6]

      [6] Liu L, Qi Y, Hu J, et al. Appl. Surf. Sci., 2015,351:1146-1154

    7. [7]

      [7] Bai X, Zong R, Li C, et al. Appl. Catal. B:Environ., 2014,147:82-91

    8. [8]

      [8] Maeda K, Wang X, Nishihara Y, et al. J. Phys. Chem. C, 2009,113(12):4940-4947

    9. [9]

      [9] Hughbanks T, Tian Y. Solid State Commun., 1995,96(5):321-325

    10. [10]

      [10] GUI Ming-Sheng(桂明生), WANG Peng-Fei(王鹏飞), YUAN Dong(袁东), et al. Chinese J. Inorg. Chem.(无机化学学报), 2013,29(10):2057-2064

    11. [11]

      [11] Niu P, Zhang L, Liu G, et al. Adv. Funct. Mater., 2012,22(22):4763-4770.

    12. [12]

      [12] CHU Zeng-Yong(楚增勇), YUAN Bo(原博), YAN Ting-Nan (颜廷楠). J. Inorg. Mater.(无机材料学报), 2014,29(8):785-794

    13. [13]

      [13] Chen L, Huang D, Ren S, et al. Nanoscale, 2013,5(1):225-230

    14. [14]

      [14] Yang S, Gong Y, Zhang J, et al. Adv. Mater., 2013,25(17):2452-2456

    15. [15]

      [15] Li D, Xia Y. Adv. Mater., 2004,16(14):1151-1170

    16. [16]

      [16] Miao J, Miyauchi M, Simmons T, et al. J. Nanosci. Nanote-chnol., 2010,10(9):5507-5519

    17. [17]

      [17] LU Jian-Jian(卢建建), YING Zong-Rong(应宗荣), LIU Xin-Dong(刘信东), et al. Acta Phys-Chim. Sin.(物理化学学报), 2015,31(11):2099-2108

    18. [18]

      [18] SUN Li-Ping(孙丽萍), ZHAO Hui(赵辉), WANG Wen-Xue (王文学), et al. Chinese J. Inorg. Chem.(无机化学学报), 2014,30(4):757-762

    19. [19]

      [19] Nalbandian M, Zhang M, Sanchez J, et al. J. Mol. Catal. A:Chem., 2015,404:18-26

    20. [20]

      [20] Kim M, Kim Y, Lee K M, et al. Carbon, 2016,99:607-618

    21. [21]

      [21] ZHANG Jiao-Bo(张校菠), CHEN Ming-Hai(陈名海), ZHANG Jiao-Gang(张校刚), et al. Acta Phys-Chim. Sin.(物理化学学报), 2010,26(12):3169-3174

    22. [22]

      [22] Di Valentin C, Pacchioni G, Selloni A. Chem. Mater., 2005, 17(26):6656-6665

    23. [23]

      [23] Samadi M, Shivaee H A, Pourjavadi A, et al. Appl. Catal. A:Gen., 2013,466:153-160

    24. [24]

      [24] Lin Q, Li L, Liang S, et al. Appl. Catal. B:Environ., 2015, 163:135-142

    25. [25]

      [25] Lee H, Kim H, Kang S, et al. J. Ind. Eng. Chem., 2015,21:736-740

    26. [26]

      [26] Cui Y, Tang Y, Wang X. Mater. Lett., 2015,161:197-200

    27. [27]

      [27] Liu L, Qi Y, Hu J, et al. Mater. Lett., 2015,158:278-281

    28. [28]

      [28] LI Dong-Feng(李东风), WANG Hao-Jing(王浩静), WANG Xin-Kui(王心葵). Spectrosc. Spect. Anal.(光谱学与光谱分析), 2007,27(11):2249-2253

    29. [29]

      [29] Bourlinos A B, Giannelis E P, Sanakis Y, et al. Carbon, 2006,44(10):1906-1912

    30. [30]

      [30] Mousavi M, Habibi-Yangjeh A. J. Colloid Interface Sci., 2016,465:83-92

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    3. [3]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    4. [4]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    5. [5]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    6. [6]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    7. [7]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    8. [8]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    9. [9]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    10. [10]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    11. [11]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    12. [12]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    13. [13]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    14. [14]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    15. [15]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    16. [16]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    17. [17]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    18. [18]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    19. [19]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    20. [20]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

Metrics
  • PDF Downloads(0)
  • Abstract views(303)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return