Citation: ZHANG Yong-Po, YANG Jia-Jia, LÜ Jia-Yuan, GAO Chun-Yan, ZHAO Jin-Zhong. Syntheses, Structures, DNA/BSA Binding and DNA Cleavage of Mononuclear Manganese(Ⅱ) and Cobalt(Ⅱ) Complexes with N,O-Chelating Quinoline Derivative Ligand[J]. Chinese Journal of Inorganic Chemistry, ;2016, 32(12): 2172-2182. doi: 10.11862/CJIC.2016.265 shu

Syntheses, Structures, DNA/BSA Binding and DNA Cleavage of Mononuclear Manganese(Ⅱ) and Cobalt(Ⅱ) Complexes with N,O-Chelating Quinoline Derivative Ligand

  • Corresponding author: GAO Chun-Yan,  ZHAO Jin-Zhong, 
  • Received Date: 15 June 2016
    Available Online: 29 September 2016

    Fund Project:

  • Two new mononuclear complexes[ML(H2O)3]·H2O (M=Mn(1) and Co(2)) of quinoline derivative ligand (Na2L=sodium 8-(carboxylatomethoxy)quinoline-2-carboxylate) have been synthesized and characterized. The complexes are isostructural and both metal centers are heptacoordinated with O6N donor sets and the geometry around metal centers can be best described as distorted pentagonal bipyramidal. Interactions of the complexes with CT-DNA and BSA have been explored by absorption and emission spectral methods. Binding abilities of the complexes to CT-DNA display a relative order:2>1, while the quenching mechanisms of BSA by both complexes are static procedures and the binding constant values follow the order:1>2. In the presence of H2O2 as a revulsant or an activator, compared with complex 1, the DNA cleavage efficiency of 2 exhibited more remarkable increases at the same conditions. Oxidative mechanism has been demonstrated by adding standard radical scavengers and the reactive oxygen species (ROS) responsible for the DNA cleavage is likely hydroxyl radicals (OH·).
  • 加载中
    1. [1]

      [1] Barone G, Terenzi A, Lauria A, et al. Coord. Chem. Rev., 2013,257(19):2848-2862

    2. [2]

      [2] Jiang Q, Xiao N, Shi P, et al. Coord. Chem. Rev., 2007,251(15):1951-1972

    3. [3]

      [3] Pages B J, Ang D L, Wright E P, et al. Dalton Trans., 2015, 44(8):3505-3526

    4. [4]

      [4] Rosenberg B, Van Camp L, Krigas T. Nature, 1965,205:698-699

    5. [5]

      [5] Rosenberg B, Van camp L. Nature, 1969,222:385-386

    6. [6]

      [6] Mjos K D, Orvig C. Chem. Rev., 2014,114(8):4540-4563

    7. [7]

      [7] Wilson J J, Lippard S J. Chem. Rev., 2013,114(8):4470-4495

    8. [8]

      [8] Storr T, Thompson K H, Orvig C. Chem. Soc. Rev., 2006,35(6):534-544

    9. [9]

      [9] Reedijk J. Proc. Natl. Acad. Sci. U.S.A., 2003,100(7):3611-3616

    10. [10]

      [10] Komor A C, Barton J K. Chem. Commun., 2013,49(35):3617-3630

    11. [11]

      [11] Leung C H, He H Z, Liu L J, et al. Coord. Chem. Rev., 2013,257(21):3139-3151

    12. [12]

      [12] Liu H K, Sadler P J. Acc. Chem. Res., 2011,44(5):349-359

    13. [13]

      [13] Aiba Y, Sumaoka J, Komiyama M. Chem. Soc. Rev., 2011, 40(12):5657-5668

    14. [14]

      [14] Munteanu C R, Suntharalingam K. Dalton Trans., 2015,44(31):13796-13808

    15. [15]

      [15] Ghosh K, Tyagi N, Kumar P. Inorg. Chem. Commun., 2010, 13(3):380-383

    16. [16]

      [16] Ghosh K, Mohan V, Kumar P, et al. Polyhedron, 2013,49(1):167-176

    17. [17]

      [17] Daniel K G, Chen D, Orlu S, et al. Breast Cancer Res., 2005,7(6):R897-R908

    18. [18]

      [18] Chen D, Peng F, Cui Q C, et al. Front. Biosci., 2005,10(2):2932-2939

    19. [19]

      [19] Zheng Q, Wang S, Liu W. Tetrahedron, 2014,70(42):7686-7690

    20. [20]

      [20] Sheldrick G M. SHELXS-97, Program for the Solution of Crystal Structure, University of Göttingen, Germany, 1997.

    21. [21]

      [21] Sheldrick G M. SHELXL-97, Program for the Refinement of Crystal Structure, University of Göttingen, Germany, 1997.

    22. [22]

      [22] Gao C Y, Ma Z Y, Zhang Y P, et al. RSC Adv., 2015,5(39):30768-30779

    23. [23]

      [23] Gao C Y, Qiao X, Ma Z Y, et al. Dalton Trans., 2012,41(39):12220-12232

    24. [24]

      [24] Zhang Y P, Ma Z Y, Gao C Y, et al. New J. Chem., 2016,40(9):7513-7521

    25. [25]

      [25] Marmur J. J. Mol. Biol., 1961,3(2):208-218

    26. [26]

      [26] Gultneh Y, Khan A R, Blaise D, et al. J. Inorg. Biochem., 1999,75(1):7-18

    27. [27]

      [27] Bernadou J, Pratviel G, Bennis F, et al. Biochemistry, 1989, 28(18):7268-7275

    28. [28]

      [28] Baldini M, Belicchi-Ferrari M, Bisceglie F, et al. Inorg. Chem., 2004,43(22):7170-7179

    29. [29]

      [29] Wolfe A, Shimer Jr G H, Meehan T. Biochemistry, 1987,26(20):6392-6396

    30. [30]

      [30] Meyer-Almes F J, Porschke D. Biochemistry, 1993,32(16):4246-4253

    31. [31]

      [31] Lakowicz J R, Weber G. Biochemistry, 1973,12(21):4171-4179

    32. [32]

      [32] Ramachandran E, Thomas S P, Poornima P, et al. Eur. J. Med. Chem., 2012,50:405-415

    33. [33]

      [33] Kellett A, O'Connor M, McCann M, et al. MedChemComm, 2011,2(7):579-584

    34. [34]

      [34] Wu H, Shi F, Wang X, et al. Transition Met. Chem., 2014, 39(3):261-270

    35. [35]

      [35] Cory M, McKee D D, Kagan J, et al. J. Am. Chem. Soc., 1985,107(8):2528-2536

    36. [36]

      [36] Ramakrishnan S, Shakthipriya D, Suresh E, et al. Inorg. Chem., 2011,50(14):6458-6471

    37. [37]

      [37] Gibellini D, Vitone F, Schiavone P, et al. J. Clin. Virol., 2004,29(4):282-289

    38. [38]

      [38] Lakowicz J R. Principles of Fluorescence Spectroscopy. 3rd Ed. New York:Springer, 2006:530-573

    39. [39]

      [39] Villarreal W, Colina-Vegas L, Rodrigues de Oliveira C, et al. Inorg. Chem., 2015,54(24):11709-11720

    40. [40]

      [40] Ware W R. J. Phys. Chem., 1962,66(3):455-458

    41. [41]

      [41] Scatchard G. Ann. N. Y. Acad. Sci., 1949,51(4):660-672

    42. [42]

      [42] Sathyadevi P, Krishnamoorthy P, Butorac R R, et al. Dalton Trans., 2011,40(38):9690-9702

    43. [43]

      [43] Hu Y J, Ou-Yang Y, Dai C M, et al. Biomacromolecules, 2009,11(1):106-112

  • 加载中
    1. [1]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    2. [2]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    3. [3]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    4. [4]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    5. [5]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    6. [6]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    7. [7]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    8. [8]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    9. [9]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    10. [10]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    11. [11]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    12. [12]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    13. [13]

      Xiaohong WenMei YangLie LiMingmin HuangWei CuiSuping LiHaiyan ChenChen LiQiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291

    14. [14]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    15. [15]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    16. [16]

      Zhe-Han YangJie YinLei XinYuanfang LiYijie HuangRuo YuanYing Zhuo . Research advancement of DNA-based intelligent hydrogels: Manufacture, characteristics, application of disease diagnosis and treatment. Chinese Chemical Letters, 2024, 35(10): 109558-. doi: 10.1016/j.cclet.2024.109558

    17. [17]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    18. [18]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    19. [19]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    20. [20]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

Metrics
  • PDF Downloads(2)
  • Abstract views(364)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return