Citation: WANG Hui-Gang, ZHANG Qi, ZHANG Ji-Long, YU Feng, LI Rui-Feng. Nano Sulfated Zirconia Synthesis and Its Catalytic Properties in the Transesterification[J]. Chinese Journal of Inorganic Chemistry, ;2016, 32(11): 1959-1964. doi: 10.11862/CJIC.2016.264 shu

Nano Sulfated Zirconia Synthesis and Its Catalytic Properties in the Transesterification

  • Corresponding author: YU Feng, 
  • Received Date: 8 April 2016
    Available Online: 29 September 2016

    Fund Project:

  • Nano SO42-/ZrO2 solid acid catalysts were prepared by two-step crystallization-post impregnation method and their catalytic performance in the transesterification of vegetable oil with methanol was investigated. The results of XRD, N2 adsorption-desorption and TEM showed that the single tetragonal phase catalyst calcined at 600℃ was composed of nano crystals about 5~10 nm and had the specific surface area of 137 m2·g-1 and the pore size of 3.7 nm. NH3-TPD data indicated that the calcination temperature could improve the content and intensity of the surface acid, and that more superacid content was favorable to effect the efficient conversion under general conditions. In the transesterification reaction, under the operating conditions of 5%(w/w) of catalyst calcined at 600℃, the molar ratio of methanol to oil 20:1, at 135℃ and for 6 h, vegetable oil could be completely converted to fatty acid methyl esters. Compared with the traditional SO42-/ZrO2 catalyst, the nano SO42-/ZrO2 catalyst had a higher catalytic performance and good reuse at low reaction temperature.
  • 加载中
    1. [1]

      [1] Talebian-Kiakalaieh A, Amin N A S, Mazaheri H. Appl. Energy, 2013,104(2):683-710

    2. [2]

      [2] Helwani Z, Othman M R, Aziz N, et al. Appl. Catal. A:Gen., 2009,363(1):1-10

    3. [3]

      [3] Lam M K, Lee K T, Mohamed A R. Biotechnol. Adv., 2010, 28(4):500-518

    4. [4]

      [4] YU Hui(于荟), ZHU Yin-hua(朱银华), LIU Chang(刘畅), et al. Chin. J. Catal.(催化学报), 2009,30(3):265-271

    5. [5]

      [5] Reddy B M, Patil M K. Chem. Rev., 2009,109(6):2185-2208

    6. [6]

      [6] Saravanan K, Tyagi B, Shukla R S, et al. Appl. Catal. B: Environ., 2015,172-173:108-115

    7. [7]

      [7] Sharma Y C, Singh B, Korstad J. Biofuel Bioprod. Biorefin., 2011,5(1):69-92

    8. [8]

      [8] Deshmane V G, Adewuyi Y G. Appl. Catal. A:Gen., 2013, 462:196-206

    9. [9]

      [9] Chen H, Wang J F. Chin. J. Process Eng., 2006,6(4):571-575

    10. [10]

      [10] Jitputti J, Kitiyanan B, Rangsunvigit P, et al. Chem. Eng. J., 2006,116(1):61-66

    11. [11]

      [11] Rattanaphra D, Harvey A. Top Catal., 2010,53(11/12):773-782

    12. [12]

      [12] Garcia C M, Teixeira S, Marciniuk L L, et al. Bioresour. Technol., 2008,99(14):6608-6613

    13. [13]

      [13] ZHANG Qi(张琪), ZHANG Ji-Long(张继龙), WANG Hui-Gang(王会刚), et al. Mod. Chem. Ind.(现代化工), 2013,33(8):134-138

    14. [14]

      [14] Zhang Q Q, Ming W X, Ma J H, et al. J. Mater. Chem. A, 2014,2(23):8712-8718

    15. [15]

      [15] Cristian D M M, Alfonso E R S, et al. J. Mol. Catal. A:Chem., 2015,398:325-335

    16. [16]

      [16] Boskovic G C, Zarubica A R, et al. J. Therm. Anal. Calorim., 2008,91:849-854

    17. [17]

      [17] Patel A, Brahmkhatri V, Singh N. Renewable Energ., 2013, 51:227-233

    18. [18]

      [18] Liao Y, Huang X, Liao X P, et al. J. Mol. Catal. A:Chem., 2011,347(1):46-51

    19. [19]

      [19] Yuan Q, Li L L, Lu S L, et al. J. Phys. Chem. C, 2009,113(10):4117-4124

    20. [20]

      [20] Yue Z, Wong W T, Yung K F. Appl. Energy, 2014,116(3): 191-198

    21. [21]

      [21] Ivanov V K, Baranchikov A Y, et al. J. Solid State Chem., 2013,198(2):496-505

    22. [22]

      [22] Velasquez-Orta S B, Lee J G M, Harvey A P. Biochem. Eng. J., 2013,76:83-89

    23. [23]

      [23] Fu B, Gao L, Lei N, et al. Energy Fuels, 2009,23(1):569-572

    24. [24]

      [24] Furuta S, Matsuhashi H, Arata K. Catal. Commun., 2004,5(12):721-723

    25. [25]

      [25] Shu Q, Song Q, Yang B, et al. Catal. Commun., 2007,8(12): 2159-2165

    26. [26]

      [26] Suwannakarn K, Lotero E, Goodwin J G, et al. J. Catal., 2008,255(2):279-286

  • 加载中
    1. [1]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    2. [2]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    3. [3]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    4. [4]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    5. [5]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    6. [6]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    7. [7]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    8. [8]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    9. [9]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    10. [10]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    11. [11]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    12. [12]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    13. [13]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    14. [14]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    15. [15]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    16. [16]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    17. [17]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    18. [18]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    19. [19]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    20. [20]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

Metrics
  • PDF Downloads(9)
  • Abstract views(360)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return