Citation: LI Xiao-Fen, CHEN Meng-Ying, LIANG Shi-Jing, LI Xiao-Juan, BI Jin-Hong. Preparation and Photocatalytic Performance of Ag Nanoparticles Loaded CdMoO4 Photocatalyst[J]. Chinese Journal of Inorganic Chemistry, ;2016, 32(11): 1987-1994. doi: 10.11862/CJIC.2016.257 shu

Preparation and Photocatalytic Performance of Ag Nanoparticles Loaded CdMoO4 Photocatalyst

  • Corresponding author: BI Jin-Hong, 
  • Received Date: 3 June 2016
    Available Online: 19 October 2016

    Fund Project:

  • Ag nanoparticles loaded CdMoO4 photocatalysts were prepared via a hydrothermal process followed by the sodium borohydride reduction method. The composition and structure of the catalysts were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscopy (TEM) techniques. The photo-response and surface state of the catalysts were investigated by UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) and X-ray photoelectron spectroscopy (XPS). The effect of the loaded amount of Ag nanoparticles on the photocatalytic activity of CdMoO4 photocatalyst for the degradation of rhodamine B (RhB) under UV light and the selective oxidation of benzyl alcohol under visible light were investigated. The results showed that the composite photocatalysts exhibited significantly enhanced photocatalytic activity compared to pure CdMoO4. The mechanism was studied by employing chemical scavengers technology, which indicated that O2-·and·OH are the main species in the photocatalytic process.
  • 加载中
    1. [1]

      [1] Jiang X H, Ma J F, Cheng J, et al. Adv. Mater., 2012,472: 2452-2457

    2. [2]

      [2] Sato S. Chem. Phys. Lett., 1986,123(1):126-128

    3. [3]

      [3] YANG Wen-Qing (杨文庆). Mater. Prot.(材料保护), 1995, 28(8):16-19

    4. [4]

      [4] Phuruangrat A, Thongtem T, Thongtem S. J. Phys. Chem. Solids, 2009,70(6):955-959

    5. [5]

      [5] Wu X, Du J, Li H, et al. J. Solid State Chem., 2007,180(11): 3288-3295

    6. [6]

      [6] Mikhailik V B, Kraus H, Wahl D, et al. Phys. Status Solidi B, 2005,242(2):R17-R19

    7. [7]

      [7] Jayaraman A, Wang S Y, Sharma S K. Phys. Rev. B, 1995, 52(14):9886-9889

    8. [8]

      [8] Beckmann P A, Bai S, Dybowski C. Phys. Rev. B, 2005,71(1):012410

    9. [9]

      [9] Zhen L, Wang W S, Xu C Y, et al. Scr. Mater., 2008,58(6): 461-464

    10. [10]

      [10] Liu H, Tan L. Ionics, 2010,16(1):57-60

    11. [11]

      [11] Zhou L, Wang W, Xu H, et al. Cryst. Growth Des., 2008,8(10):3595-3601

    12. [12]

      [12] Gong Q, Li G, Qian X, et al. J. Colloid Interface Sci., 2006, 304(2):408-412

    13. [13]

      [13] Wang W S, Zhen L, Xu C Y, et al. Cryst. Growth Des., 2009,9(3):1558-1568

    14. [14]

      [14] Zhao L, Zhang L, Lin H, et al. J. Hazard. Mater., 2015,299: 333-342

    15. [15]

      [15] Bi J H, Zhou Z Y, Chen M Y, et al. Appl. Surf. Sci., 2015, 349:292-298

    16. [16]

      [16] Xu J, Wu M, Chen M, et al. Powder Technol., 2015,281: 167-172

    17. [17]

      [17] HAN Jing(韩婧), SHI Li-Yi(施利毅), CHENG Rong-Ming (成荣明), et al. Chinese J. Inorg. Chem.(无机化学学报), 2008,24(6):950-955

    18. [18]

      [18] Liu L, Lin S, Hu J, et al. Appl. Surf. Sci., 2015,330:94-103

    19. [19]

      [19] Liang Y, Lin S, Liu L, et al. Appl. Catal. B, 2015,164:192-203

    20. [20]

      [20] Liu L, Ding L, Liu Y, et al. Appl. Catal. B, 2017,201:92-104

    21. [21]

      [21] Liu L, Qi Y, Lu J, et al. Appl. Catal. B, 2016,183:133-141

    22. [22]

      [22] Sarina S, Waclawik E R, Zhu H. Green Chem., 2013,15(7): 1814-1833

    23. [23]

      [23] Zheng Z, Huang B, Qin X, et al. J. Mater. Chem., 2011,21(25):9079-9087

    24. [24]

      [24] Zhu H, Chen X, Zheng Z, et al. Chem. Commun., 2009(48): 7524-7526

    25. [25]

      [25] Xin B, Jing L, Ren Z, et al. J. Phys. Chem. B, 2005,109(7): 2805-2809

    26. [26]

      [26] Li H, Bian Z, Zhu J, et al. J. Am. Chem. Soc., 2007,129(15):4538-4539

    27. [27]

      [27] Yu J, Yue L, Liu S, et al. J. Colloid Interface Sci., 2009,334(1):58-64

    28. [28]

      [28] Thongtem T, Phuruangrat A, Thongtem S. Mater. Lett., 2008, 62(3):454-457

    29. [29]

      [29] Phuruangrat A, Thongtem T, Thongtem S. J. Alloys Compd., 2009,481(1):568-572

    30. [30]

      [30] Phuruangrat A, Thongtem T, Thongtem S. J. Cryst. Growth, 2009,311(16):4076-4081

    31. [31]

      [31] Zhu S, Liang S, Gu Q, et al. Appl. Catal. B:Enviro., 2012, 119:146-155

    32. [32]

      [32] Fang J, Cao S W, Wang Z, et al. Int. J. Hydrogen Energy, 2012,37(23):17853-17861

    33. [33]

      [33] Long J, Wang S, Ding Z, et al. Chem. Commun., 2012,48(95):11656-11658

  • 加载中
    1. [1]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    2. [2]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    3. [3]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    6. [6]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    7. [7]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    8. [8]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    9. [9]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    10. [10]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    11. [11]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    12. [12]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    13. [13]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    14. [14]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    15. [15]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    16. [16]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    17. [17]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    18. [18]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    19. [19]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    20. [20]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

Metrics
  • PDF Downloads(2)
  • Abstract views(302)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return