Citation:
LI Xiao-Fen, CHEN Meng-Ying, LIANG Shi-Jing, LI Xiao-Juan, BI Jin-Hong. Preparation and Photocatalytic Performance of Ag Nanoparticles Loaded CdMoO4 Photocatalyst[J]. Chinese Journal of Inorganic Chemistry,
;2016, 32(11): 1987-1994.
doi:
10.11862/CJIC.2016.257
-
Ag nanoparticles loaded CdMoO4 photocatalysts were prepared via a hydrothermal process followed by the sodium borohydride reduction method. The composition and structure of the catalysts were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscopy (TEM) techniques. The photo-response and surface state of the catalysts were investigated by UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) and X-ray photoelectron spectroscopy (XPS). The effect of the loaded amount of Ag nanoparticles on the photocatalytic activity of CdMoO4 photocatalyst for the degradation of rhodamine B (RhB) under UV light and the selective oxidation of benzyl alcohol under visible light were investigated. The results showed that the composite photocatalysts exhibited significantly enhanced photocatalytic activity compared to pure CdMoO4. The mechanism was studied by employing chemical scavengers technology, which indicated that O2-·and·OH are the main species in the photocatalytic process.
-
-
-
[1]
[1] Jiang X H, Ma J F, Cheng J, et al. Adv. Mater., 2012,472: 2452-2457
-
[2]
[2] Sato S. Chem. Phys. Lett., 1986,123(1):126-128
-
[3]
[3] YANG Wen-Qing (杨文庆). Mater. Prot.(材料保护), 1995, 28(8):16-19
-
[4]
[4] Phuruangrat A, Thongtem T, Thongtem S. J. Phys. Chem. Solids, 2009,70(6):955-959
-
[5]
[5] Wu X, Du J, Li H, et al. J. Solid State Chem., 2007,180(11): 3288-3295
-
[6]
[6] Mikhailik V B, Kraus H, Wahl D, et al. Phys. Status Solidi B, 2005,242(2):R17-R19
-
[7]
[7] Jayaraman A, Wang S Y, Sharma S K. Phys. Rev. B, 1995, 52(14):9886-9889
-
[8]
[8] Beckmann P A, Bai S, Dybowski C. Phys. Rev. B, 2005,71(1):012410
-
[9]
[9] Zhen L, Wang W S, Xu C Y, et al. Scr. Mater., 2008,58(6): 461-464
-
[10]
[10] Liu H, Tan L. Ionics, 2010,16(1):57-60
-
[11]
[11] Zhou L, Wang W, Xu H, et al. Cryst. Growth Des., 2008,8(10):3595-3601
-
[12]
[12] Gong Q, Li G, Qian X, et al. J. Colloid Interface Sci., 2006, 304(2):408-412
-
[13]
[13] Wang W S, Zhen L, Xu C Y, et al. Cryst. Growth Des., 2009,9(3):1558-1568
-
[14]
[14] Zhao L, Zhang L, Lin H, et al. J. Hazard. Mater., 2015,299: 333-342
-
[15]
[15] Bi J H, Zhou Z Y, Chen M Y, et al. Appl. Surf. Sci., 2015, 349:292-298
-
[16]
[16] Xu J, Wu M, Chen M, et al. Powder Technol., 2015,281: 167-172
-
[17]
[17] HAN Jing(韩婧), SHI Li-Yi(施利毅), CHENG Rong-Ming (成荣明), et al. Chinese J. Inorg. Chem.(无机化学学报), 2008,24(6):950-955
-
[18]
[18] Liu L, Lin S, Hu J, et al. Appl. Surf. Sci., 2015,330:94-103
-
[19]
[19] Liang Y, Lin S, Liu L, et al. Appl. Catal. B, 2015,164:192-203
-
[20]
[20] Liu L, Ding L, Liu Y, et al. Appl. Catal. B, 2017,201:92-104
-
[21]
[21] Liu L, Qi Y, Lu J, et al. Appl. Catal. B, 2016,183:133-141
-
[22]
[22] Sarina S, Waclawik E R, Zhu H. Green Chem., 2013,15(7): 1814-1833
-
[23]
[23] Zheng Z, Huang B, Qin X, et al. J. Mater. Chem., 2011,21(25):9079-9087
-
[24]
[24] Zhu H, Chen X, Zheng Z, et al. Chem. Commun., 2009(48): 7524-7526
-
[25]
[25] Xin B, Jing L, Ren Z, et al. J. Phys. Chem. B, 2005,109(7): 2805-2809
-
[26]
[26] Li H, Bian Z, Zhu J, et al. J. Am. Chem. Soc., 2007,129(15):4538-4539
-
[27]
[27] Yu J, Yue L, Liu S, et al. J. Colloid Interface Sci., 2009,334(1):58-64
-
[28]
[28] Thongtem T, Phuruangrat A, Thongtem S. Mater. Lett., 2008, 62(3):454-457
-
[29]
[29] Phuruangrat A, Thongtem T, Thongtem S. J. Alloys Compd., 2009,481(1):568-572
-
[30]
[30] Phuruangrat A, Thongtem T, Thongtem S. J. Cryst. Growth, 2009,311(16):4076-4081
-
[31]
[31] Zhu S, Liang S, Gu Q, et al. Appl. Catal. B:Enviro., 2012, 119:146-155
-
[32]
[32] Fang J, Cao S W, Wang Z, et al. Int. J. Hydrogen Energy, 2012,37(23):17853-17861
-
[33]
[33] Long J, Wang S, Ding Z, et al. Chem. Commun., 2012,48(95):11656-11658
-
[1]
-
-
-
[1]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[2]
Xia ZHANG , Yushi BAI , Xi CHANG , Han ZHANG , Haoyu ZHANG , Liman PENG , Shushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255
-
[3]
Yuanqing Wang , Yusong Pan , Hongwu Zhu , Yanlei Xiang , Rong Han , Run Huang , Chao Du , Chengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050
-
[4]
Ling Liu , Haibin Wang , Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080
-
[5]
Xinxin YU , Yongxing LIU , Xiaohong YI , Miao CHANG , Fei WANG , Peng WANG , Chongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438
-
[6]
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028
-
[7]
Jin ZHANG , Yuting WANG , Bin YU , Yuxin ZHONG , Yufeng ZHANG . Corn straw-derived carbon/BiOBr composite: Synthesis and photocatalytic degradation performance for rhodamine B. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1397-1408. doi: 10.11862/CJIC.20250028
-
[8]
Deyun Ma , Fenglan Liang , Qingquan Xue , Yanping Liu , Chunqiang Zhuang , Shijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190
-
[9]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[10]
Qinhui Guan , Yuhao Guo , Na Li , Jing Li , Tingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133
-
[11]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[12]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[13]
Yifan ZHAO , Qiyun MAO , Meijing GUO , Guoying ZHANG , Tongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001
-
[14]
Haitao Wang , Lianglang Yu , Jizhou Jiang , Arramel , Jing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047
-
[15]
Jiajia Wang , Sibo Huang , Xijing Gao , Chaoxun Liu , Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050
-
[16]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014
-
[17]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005
-
[18]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016
-
[19]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030
-
[20]
Chengxiao Zhao , Zhaolin Li , Dongfang Wu , Xiaofei Yang . SBA-15 templated covalent triazine frameworks for boosted photocatalytic hydrogen production. Acta Physico-Chimica Sinica, 2026, 42(1): 100149-0. doi: 10.1016/j.actphy.2025.100149
-
[1]
Metrics
- PDF Downloads(2)
- Abstract views(1215)
- HTML views(24)
Login In
DownLoad: