Citation: LIU Xiang, HAN Jing, YU Zhong, WANG Xiao-Xiang. Three Coordination Polymer Microcrystals:Size-Controlled Syntheses and Photocatalytic Properties[J]. Chinese Journal of Inorganic Chemistry, ;2016, 32(11): 1931-1941. doi: 10.11862/CJIC.2016.253 shu

Three Coordination Polymer Microcrystals:Size-Controlled Syntheses and Photocatalytic Properties

  • Corresponding author: HAN Jing, 
  • Received Date: 4 May 2016
    Available Online: 27 September 2016

    Fund Project:

  • Microcrystals of Ni(Ⅱ), Co(Ⅱ) and Zn(Ⅱ) coordination polymers based on 4,4'-oxybisbenzoic acid (oba) and 4,4'-bipyridine (4,4'-bpy) with sizes ranging from 10 to 250 μm were prepared hydrothermally by regulating the amount of NEt3, reaction time and reaction temperature. The crystal sizes, morphologies and structures were characterized and analyzed by scanning electron microscopy (SEM) and X-ray powder diffraction (XRPD). Photocatalytic measurements demonstrate that three polymers have excellent degradation capacities of organic dyes such as rhodamine B (RhB), methyl orange (MO) and methylene blue (MB) and the degradation rate increases with the decrease of catalyst sizes. Remarkably, the photocatalytic performance of Ni(Ⅱ) complex (30 μm) for RhB exceeds that of the nano-sized TiO2 under same experimental conditions. In addition, XRPD studies show three coordination polymers are structurally stable after one cycle of photodegradation and thus can be utilized repeatedly as photocatalysts.
  • 加载中
    1. [1]

      [1] Thompson T L, Yates J T. Chem. Rev., 2006,106(10):4428-4453

    2. [2]

      [2] Mills A, Hunte S L. Chem. Rev., 1997,108:1-35

    3. [3]

      [3] Ayoub K, van Hullebusch E D, Cassir M, et al. J. Hazard. Mater., 2010,178(1/2/3):10-28

    4. [4]

      [4] Akpan U G, Hameed B H. J. Hazard. Mater., 2009,170(2/3): 520-529

    5. [5]

      [5] Du J J, Yuan Y P, Sun J X, et al. J. Hazard. Mater., 2011, 190(1/2/3):945-951

    6. [6]

      [6] Murray L J, Dinca M, Long J R. Chem. Soc. Rev., 2009,38(5):1294-1314

    7. [7]

      [7] Ferey G. Nat. Mater., 2003,2(3):136-137

    8. [8]

      [8] Zeng M H, Wang Q X, Tan Y X, et al. J. Am. Chem. Soc., 2010,132(8):2561-2563

    9. [9]

      [9] Liu W T, Ou Y C, Xie Y L, et al. Eur. J. Inorg. Chem., 2009,28:4213-4218

    10. [10]

      [10] ZHAO Nan(赵楠), DENG Hong-Ping(邓洪萍), SHU Mou-Hai(舒谋海), et al. Chinese J. Inorg. Chem.(无机化学学报), 2010,26(7):1213-1217

    11. [11]

      [11] Silva C G, Corma A, Garcia H. J. Mater. Chem., 2010,20(16):3141-3156

    12. [12]

      [12] Lin H, Maggard P A. Inorg. Chem., 2008,47(18):8044-8052

    13. [13]

      [13] Liao Z L, Li G D, Bi M H, et al. Inorg. Chem., 2008,47(11): 4844-4853

    14. [14]

      [14] Yu Z T, Liao Z L, Jiang Y S, et al. Chem. Commun., 2004, (16):1814-1815

    15. [15]

      [15] Yu Z T, Liao Z L, Jiang Y S, et al. Chem. Eur. J., 2005,11(9):2642-2650

    16. [16]

      [16] Peng X, Manna L, Yang W, et al. Nature, 2000,404(6773): 59-61

    17. [17]

      [17] Horn D, Rieger J. Angew. Chem, Int. Ed., 2001,40(23): 4330-4361

    18. [18]

      [18] Chen J, Herricks T, Xia Y. Angew. Chem, Int. Ed., 2005,44(17):2589-2592

    19. [19]

      [19] Taylor K M L, Jin A, Lin W. Angew. Chem. Int. Ed., 2008, 120(40):7836-7839

    20. [20]

      [20] Guo L, Liu C, Wang R, et al. J. Am. Chem. Soc., 2004,126(14):4530-4531

    21. [21]

      [21] Tsuruoka T, Furukawa S, Takashima Y, et al. Angew. Chem. Int. Ed., 2009,48(26):4739-4743

    22. [22]

      [22] FAN Ying-Hua(范英华), LUO Qin(雒琴), LIU Gui-Xia (刘桂霞), et al. Chinese J. Inorg. Chem.(无机化学学报), 2014,30(3):627-632

    23. [23]

      [23] Guo H, Zhu Y, Wang S, et al. Chem. Mater., 2012,24(3): 444-450

    24. [24]

      [24] Sun H L, Shi H, Zhao F, et al. Chem. Commun., 2005,(34): 4339-4341

    25. [25]

      [25] WANG Jun(王俊), CAO Wei-Man(曹伟曼), YANG Hong (杨红), et al. J. Shanghai Normal Univ.(上海师范大学学报), 2010,39(2):166-174

    26. [26]

      [26] Han J, Yu Z, He X, Li P, et al. Inorg. Chim. Acta, 2012, 388(1):98-101

    27. [27]

      [27] Ji W J, Hu M C, Li S N, et al. CrystEngComm, 2014,16(17): 3474-3477

  • 加载中
    1. [1]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    2. [2]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    3. [3]

      Xuyu WANGXinran XIEDengke CAO . Photoreaction characteristics and luminescence modulation in phosphine-anthracene-based Au(Ⅰ) and Ir(Ⅲ) complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1513-1522. doi: 10.11862/CJIC.20250113

    4. [4]

      Xiaotong LUPan ZHANGZijie ZHAOLei HUANGHongwei ZUOLili LIANG . Antitumor and antibacterial activities of pyridyl Schiff base indium and dysprosium complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1523-1532. doi: 10.11862/CJIC.20250073

    5. [5]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    6. [6]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    7. [7]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    8. [8]

      Yang XiaKangyan ZhangHeng YangLijuan ShiQun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012

    9. [9]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    10. [10]

      Ruolin CHENGYue WANGXiyao NIUHuagen LIANGLing LIUShijian LU . Efficient photothermal catalytic CO2 cycloaddition over W18O49/rGO composites. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1276-1284. doi: 10.11862/CJIC.20240424

    11. [11]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    12. [12]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    13. [13]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    14. [14]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    15. [15]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    16. [16]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    17. [17]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    18. [18]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    19. [19]

      Jiajia Wang Sibo Huang Xijing Gao Chaoxun Liu Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050

    20. [20]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

Metrics
  • PDF Downloads(1)
  • Abstract views(374)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return