Citation: LIU Xiang, HAN Jing, YU Zhong, WANG Xiao-Xiang. Three Coordination Polymer Microcrystals:Size-Controlled Syntheses and Photocatalytic Properties[J]. Chinese Journal of Inorganic Chemistry, ;2016, 32(11): 1931-1941. doi: 10.11862/CJIC.2016.253 shu

Three Coordination Polymer Microcrystals:Size-Controlled Syntheses and Photocatalytic Properties

  • Corresponding author: HAN Jing, 
  • Received Date: 4 May 2016
    Available Online: 27 September 2016

    Fund Project:

  • Microcrystals of Ni(Ⅱ), Co(Ⅱ) and Zn(Ⅱ) coordination polymers based on 4,4'-oxybisbenzoic acid (oba) and 4,4'-bipyridine (4,4'-bpy) with sizes ranging from 10 to 250 μm were prepared hydrothermally by regulating the amount of NEt3, reaction time and reaction temperature. The crystal sizes, morphologies and structures were characterized and analyzed by scanning electron microscopy (SEM) and X-ray powder diffraction (XRPD). Photocatalytic measurements demonstrate that three polymers have excellent degradation capacities of organic dyes such as rhodamine B (RhB), methyl orange (MO) and methylene blue (MB) and the degradation rate increases with the decrease of catalyst sizes. Remarkably, the photocatalytic performance of Ni(Ⅱ) complex (30 μm) for RhB exceeds that of the nano-sized TiO2 under same experimental conditions. In addition, XRPD studies show three coordination polymers are structurally stable after one cycle of photodegradation and thus can be utilized repeatedly as photocatalysts.
  • 加载中
    1. [1]

      [1] Thompson T L, Yates J T. Chem. Rev., 2006,106(10):4428-4453

    2. [2]

      [2] Mills A, Hunte S L. Chem. Rev., 1997,108:1-35

    3. [3]

      [3] Ayoub K, van Hullebusch E D, Cassir M, et al. J. Hazard. Mater., 2010,178(1/2/3):10-28

    4. [4]

      [4] Akpan U G, Hameed B H. J. Hazard. Mater., 2009,170(2/3): 520-529

    5. [5]

      [5] Du J J, Yuan Y P, Sun J X, et al. J. Hazard. Mater., 2011, 190(1/2/3):945-951

    6. [6]

      [6] Murray L J, Dinca M, Long J R. Chem. Soc. Rev., 2009,38(5):1294-1314

    7. [7]

      [7] Ferey G. Nat. Mater., 2003,2(3):136-137

    8. [8]

      [8] Zeng M H, Wang Q X, Tan Y X, et al. J. Am. Chem. Soc., 2010,132(8):2561-2563

    9. [9]

      [9] Liu W T, Ou Y C, Xie Y L, et al. Eur. J. Inorg. Chem., 2009,28:4213-4218

    10. [10]

      [10] ZHAO Nan(赵楠), DENG Hong-Ping(邓洪萍), SHU Mou-Hai(舒谋海), et al. Chinese J. Inorg. Chem.(无机化学学报), 2010,26(7):1213-1217

    11. [11]

      [11] Silva C G, Corma A, Garcia H. J. Mater. Chem., 2010,20(16):3141-3156

    12. [12]

      [12] Lin H, Maggard P A. Inorg. Chem., 2008,47(18):8044-8052

    13. [13]

      [13] Liao Z L, Li G D, Bi M H, et al. Inorg. Chem., 2008,47(11): 4844-4853

    14. [14]

      [14] Yu Z T, Liao Z L, Jiang Y S, et al. Chem. Commun., 2004, (16):1814-1815

    15. [15]

      [15] Yu Z T, Liao Z L, Jiang Y S, et al. Chem. Eur. J., 2005,11(9):2642-2650

    16. [16]

      [16] Peng X, Manna L, Yang W, et al. Nature, 2000,404(6773): 59-61

    17. [17]

      [17] Horn D, Rieger J. Angew. Chem, Int. Ed., 2001,40(23): 4330-4361

    18. [18]

      [18] Chen J, Herricks T, Xia Y. Angew. Chem, Int. Ed., 2005,44(17):2589-2592

    19. [19]

      [19] Taylor K M L, Jin A, Lin W. Angew. Chem. Int. Ed., 2008, 120(40):7836-7839

    20. [20]

      [20] Guo L, Liu C, Wang R, et al. J. Am. Chem. Soc., 2004,126(14):4530-4531

    21. [21]

      [21] Tsuruoka T, Furukawa S, Takashima Y, et al. Angew. Chem. Int. Ed., 2009,48(26):4739-4743

    22. [22]

      [22] FAN Ying-Hua(范英华), LUO Qin(雒琴), LIU Gui-Xia (刘桂霞), et al. Chinese J. Inorg. Chem.(无机化学学报), 2014,30(3):627-632

    23. [23]

      [23] Guo H, Zhu Y, Wang S, et al. Chem. Mater., 2012,24(3): 444-450

    24. [24]

      [24] Sun H L, Shi H, Zhao F, et al. Chem. Commun., 2005,(34): 4339-4341

    25. [25]

      [25] WANG Jun(王俊), CAO Wei-Man(曹伟曼), YANG Hong (杨红), et al. J. Shanghai Normal Univ.(上海师范大学学报), 2010,39(2):166-174

    26. [26]

      [26] Han J, Yu Z, He X, Li P, et al. Inorg. Chim. Acta, 2012, 388(1):98-101

    27. [27]

      [27] Ji W J, Hu M C, Li S N, et al. CrystEngComm, 2014,16(17): 3474-3477

  • 加载中
    1. [1]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    2. [2]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    3. [3]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    4. [4]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    5. [5]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    6. [6]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    7. [7]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    8. [8]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    12. [12]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    13. [13]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    14. [14]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    15. [15]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    16. [16]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    17. [17]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    18. [18]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    19. [19]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    20. [20]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

Metrics
  • PDF Downloads(1)
  • Abstract views(323)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return