Citation: LIU Xiang, HAN Jing, YU Zhong, WANG Xiao-Xiang. Three Coordination Polymer Microcrystals:Size-Controlled Syntheses and Photocatalytic Properties[J]. Chinese Journal of Inorganic Chemistry, ;2016, 32(11): 1931-1941. doi: 10.11862/CJIC.2016.253 shu

Three Coordination Polymer Microcrystals:Size-Controlled Syntheses and Photocatalytic Properties

  • Corresponding author: HAN Jing, 
  • Received Date: 4 May 2016
    Available Online: 27 September 2016

    Fund Project:

  • Microcrystals of Ni(Ⅱ), Co(Ⅱ) and Zn(Ⅱ) coordination polymers based on 4,4'-oxybisbenzoic acid (oba) and 4,4'-bipyridine (4,4'-bpy) with sizes ranging from 10 to 250 μm were prepared hydrothermally by regulating the amount of NEt3, reaction time and reaction temperature. The crystal sizes, morphologies and structures were characterized and analyzed by scanning electron microscopy (SEM) and X-ray powder diffraction (XRPD). Photocatalytic measurements demonstrate that three polymers have excellent degradation capacities of organic dyes such as rhodamine B (RhB), methyl orange (MO) and methylene blue (MB) and the degradation rate increases with the decrease of catalyst sizes. Remarkably, the photocatalytic performance of Ni(Ⅱ) complex (30 μm) for RhB exceeds that of the nano-sized TiO2 under same experimental conditions. In addition, XRPD studies show three coordination polymers are structurally stable after one cycle of photodegradation and thus can be utilized repeatedly as photocatalysts.
  • 加载中
    1. [1]

      [1] Thompson T L, Yates J T. Chem. Rev., 2006,106(10):4428-4453

    2. [2]

      [2] Mills A, Hunte S L. Chem. Rev., 1997,108:1-35

    3. [3]

      [3] Ayoub K, van Hullebusch E D, Cassir M, et al. J. Hazard. Mater., 2010,178(1/2/3):10-28

    4. [4]

      [4] Akpan U G, Hameed B H. J. Hazard. Mater., 2009,170(2/3): 520-529

    5. [5]

      [5] Du J J, Yuan Y P, Sun J X, et al. J. Hazard. Mater., 2011, 190(1/2/3):945-951

    6. [6]

      [6] Murray L J, Dinca M, Long J R. Chem. Soc. Rev., 2009,38(5):1294-1314

    7. [7]

      [7] Ferey G. Nat. Mater., 2003,2(3):136-137

    8. [8]

      [8] Zeng M H, Wang Q X, Tan Y X, et al. J. Am. Chem. Soc., 2010,132(8):2561-2563

    9. [9]

      [9] Liu W T, Ou Y C, Xie Y L, et al. Eur. J. Inorg. Chem., 2009,28:4213-4218

    10. [10]

      [10] ZHAO Nan(赵楠), DENG Hong-Ping(邓洪萍), SHU Mou-Hai(舒谋海), et al. Chinese J. Inorg. Chem.(无机化学学报), 2010,26(7):1213-1217

    11. [11]

      [11] Silva C G, Corma A, Garcia H. J. Mater. Chem., 2010,20(16):3141-3156

    12. [12]

      [12] Lin H, Maggard P A. Inorg. Chem., 2008,47(18):8044-8052

    13. [13]

      [13] Liao Z L, Li G D, Bi M H, et al. Inorg. Chem., 2008,47(11): 4844-4853

    14. [14]

      [14] Yu Z T, Liao Z L, Jiang Y S, et al. Chem. Commun., 2004, (16):1814-1815

    15. [15]

      [15] Yu Z T, Liao Z L, Jiang Y S, et al. Chem. Eur. J., 2005,11(9):2642-2650

    16. [16]

      [16] Peng X, Manna L, Yang W, et al. Nature, 2000,404(6773): 59-61

    17. [17]

      [17] Horn D, Rieger J. Angew. Chem, Int. Ed., 2001,40(23): 4330-4361

    18. [18]

      [18] Chen J, Herricks T, Xia Y. Angew. Chem, Int. Ed., 2005,44(17):2589-2592

    19. [19]

      [19] Taylor K M L, Jin A, Lin W. Angew. Chem. Int. Ed., 2008, 120(40):7836-7839

    20. [20]

      [20] Guo L, Liu C, Wang R, et al. J. Am. Chem. Soc., 2004,126(14):4530-4531

    21. [21]

      [21] Tsuruoka T, Furukawa S, Takashima Y, et al. Angew. Chem. Int. Ed., 2009,48(26):4739-4743

    22. [22]

      [22] FAN Ying-Hua(范英华), LUO Qin(雒琴), LIU Gui-Xia (刘桂霞), et al. Chinese J. Inorg. Chem.(无机化学学报), 2014,30(3):627-632

    23. [23]

      [23] Guo H, Zhu Y, Wang S, et al. Chem. Mater., 2012,24(3): 444-450

    24. [24]

      [24] Sun H L, Shi H, Zhao F, et al. Chem. Commun., 2005,(34): 4339-4341

    25. [25]

      [25] WANG Jun(王俊), CAO Wei-Man(曹伟曼), YANG Hong (杨红), et al. J. Shanghai Normal Univ.(上海师范大学学报), 2010,39(2):166-174

    26. [26]

      [26] Han J, Yu Z, He X, Li P, et al. Inorg. Chim. Acta, 2012, 388(1):98-101

    27. [27]

      [27] Ji W J, Hu M C, Li S N, et al. CrystEngComm, 2014,16(17): 3474-3477

  • 加载中
    1. [1]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    2. [2]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    3. [3]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    6. [6]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    7. [7]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    8. [8]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    9. [9]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    10. [10]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    11. [11]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    12. [12]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    13. [13]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    14. [14]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    15. [15]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    16. [16]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    17. [17]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    18. [18]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    19. [19]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    20. [20]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

Metrics
  • PDF Downloads(1)
  • Abstract views(188)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return