Citation: MENG Xian-Wei, YANG Hong-Wei, HU Chang-Yi, MAO Yong-Yun, YANG Yu-Wen, CHEN Jia-Lin, . Flower-like Silver Sphere Catalytic Material:Preparation and Catalytic Activity for the Hydrogenation Reduction of p-Nitrophenol[J]. Chinese Journal of Inorganic Chemistry, ;2016, 32(11): 1981-1986. doi: 10.11862/CJIC.2016.249 shu

Flower-like Silver Sphere Catalytic Material:Preparation and Catalytic Activity for the Hydrogenation Reduction of p-Nitrophenol

  • Corresponding author: YANG Hong-Wei, 
  • Received Date: 4 June 2016
    Available Online: 13 September 2016

    Fund Project:

  • The flower-like silver sphere structure has been rapidly synthesized by self-assembly of silver nanoflakes through one-step direct mixing of silver nitrate aqueous solution and an aqueous solution containing ferrous sulfate and citric acid. The influence of dropping speed of silver nitrate aqueous solution and the dosage of citric acid on the morphology and size of product were investigated in details through different characteristic methods including X-ray diffraction (XRD) and scanning electron microscopy (SEM). Furthermore, the possible formation mechanism of flower-like silver sphere was explored. The obtained experimental results indicated that the morphology of silver particles could transform from thin flake into flower-like sphere by simply adjusting the dropping speed of silver nitrate aqueous solution. Additionally, this type of nanomaterial exhibited superior catalytic activity for the hydrogenation reduction of p-nitrophenol.
  • 加载中
    1. [1]

      [1] Xia Y, Yang P, Sun Y, et al. Adv. Mater., 2003,34(22):353-389

    2. [2]

      [2] Hu L, Kim H S, Lee J Y, et al. ACS Nano, 2010,4(5):2955-2963

    3. [3]

      [3] Peng P, Huang H, Hu A, et al. J. Mater. Chem., 2012,22(26):12997-13001

    4. [4]

      [4] WEI Zhi-Qiang(魏志强), WEN Xian-Lun(温贤伦), WU Xian-Cheng(吴现成), et al. J. Lanzhou Univ.(兰州大学学报), 2003,39(5):38-40

    5. [5]

      [5] ZHANG Zhi-Kun(张志琨), CUI Zuo-Lin(崔作林). Nano Technology and Nano Materials(纳米技术与纳米材料). Beijing:National Defence Industry Press, 2000.

    6. [6]

      [6] PENG Zi-Fei(彭子飞), WANG Guo-Zhong(汪国忠), ZHANG Li-De(张立德), et al. J. Mater. Res.(材料研究学报), 1997,1(1):104-106

    7. [7]

      [7] SONG Yong-Hui(宋永辉), LIANG Gong-Ying(梁工英), ZHANG Qiu-Li(张秋利), et al. Rare Metal Mater. Eng.(稀有金属材料与工程), 2007,36(4):709-712

    8. [8]

      [8] Song Y H, Zhou J T, Lan X Z, et al. Adv. Mater. Res., 2011, 233-235:1911-1915

    9. [9]

      [9] Yun T L, Sang H I, Xia Y N, et al. Chem. Phys. Lett., 2005, 411(4/5/6):479-483

    10. [10]

      [11] Sun Y G, Xia Y N. Adv. Mater., 2002,14:833-837

    11. [11]

      [11] HE Hui(何辉), ZHOU Jia-Ting(周家霆), DONG Hong-Jian (董红建), et al. Gold(黄金), 2013,34(1):5-9

    12. [12]

      [12] ZHANG Bo(张波), ZHAO Ai-Wu(赵爱武), WANG Da-Peng (王大朋), et al. Chem. J. Chinese Universities(高等学校化学学报), 2010,31(8):1491-1495

    13. [13]

      [13] WU Hui-Jie(吴会杰), ZHANG Jin(张进), WANG Ming-Guang(王明光), et al. J. Chongqing Univ. Arts Sci.(重庆文理学院学报), 2015(2):14-17

    14. [14]

      [14] Saha S, Pal A, Kundu S, et al. Langmuir, 2010,26:2885-2893

    15. [15]

      [15] Liu W J, Sun D R, Fu J L, et al. RSC Adv., 2014,4:11003-11011

    16. [16]

      [16] Xiong R, Lu C H, Wang Y R, et al. J. Mater. Chem. A, 2013, 1:14910-14918

    17. [17]

      [17] Tang S, Vongehr S, Meng X. J. Phys. Chem. C, 2010,114: 977-982

    18. [18]

      [18] Mao Y Y, Wei J W, Wang C, et al. Mater. Lett., 2015,154(S01):47-50

    19. [19]

      [19] Rashid M H, Mandal T K. J. Phys. Chem. C, 2007,111(45): 16750-16760

    20. [20]

      [20] Chi Y, Yuan Q, Li Y, et al. J. Colloid Interface Sci., 2012, 383(1):96-102

    21. [21]

      [21] Chi Y, Tu J, Wang M, et al. J. Colloid Interface Sci., 2014, 423(3):54-59

    22. [22]

      [22] Shin K S, Cho Y K, Choi J Y, et al. Appl. Catal. A:Gen., 2012,413:170-175

    23. [23]

      [23] Baruah B, Gabriel G J, Akbashev M J, et al. Langmuir, 2013,29(13):4225-4234

    24. [24]

      [24] Gu S, Wang W, Tan F T, et al. Mater. Res. Bull., 2014,49(1):138-143

    25. [25]

      [25] Sun Y, Mayers A B, Xia Y. Nano Lett., 2003,3(5):675-679

    26. [26]

      [26] Qiao Z, Na L, James G, et al. J. Am. Chem. Soc., 2011,133(46):18931-18939

    27. [27]

      [27] TANG Hui(唐辉). Science & Technology Information(科技信息:学术版), 2006(10):35-36

    28. [28]

      [28] Yang Y W, Mao Y Y, Wang B, et al. RSC Adv., 2016,6(39): 32430-32433

  • 加载中
    1. [1]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    2. [2]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    3. [3]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    4. [4]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    5. [5]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    6. [6]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    7. [7]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    8. [8]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    12. [12]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    13. [13]

      Yingxiao ZongYangfei WeiXiaoqing LiuJunke WangHuanfang GuoJunli WangZhuangzhi ShiTao TuCheng YangChongyang WangLeyong Wang . The 4th CCL Organic Chemistry Forum held in Zhangye. Chinese Chemical Letters, 2024, 35(8): 109743-. doi: 10.1016/j.cclet.2024.109743

    14. [14]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    15. [15]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    16. [16]

      Keke HanWenjun RaoXiuli YouHaina ZhangXing YeZhenhong WeiHu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4, ReO4). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809

    17. [17]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    18. [18]

      Xinyu Huai Jingxuan Liu Xiang Wu . Cobalt-Doped NiMoO4 Nanosheet for High-performance Flexible Supercapacitor. Chinese Journal of Structural Chemistry, 2023, 42(10): 100158-100158. doi: 10.1016/j.cjsc.2023.100158

    19. [19]

      Ying LiLong-Jie WangYong-Kang ZhouJun LiangBin XiaoJi-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033

    20. [20]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207

Metrics
  • PDF Downloads(0)
  • Abstract views(373)
  • HTML views(47)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return