Citation: YANG Qin, DU Ying-Ying, WANG Jiang-Lin, ZHANG Sheng-Min. Research Progress in Bi-template Induced Biomimetic Self-assembly of Bone-like Apatite[J]. Chinese Journal of Inorganic Chemistry, ;2016, 32(11): 1885-1895. doi: 10.11862/CJIC.2016.246 shu

Research Progress in Bi-template Induced Biomimetic Self-assembly of Bone-like Apatite

  • Corresponding author: WANG Jiang-Lin, 
  • Received Date: 12 June 2016
    Available Online: 19 September 2016

    Fund Project:

  • Natural bone is an outcome of a multi-template co-assembly process. Compared to single-template self-assembly, bone-like apatite induced by bi-template exhibits more common features and similarities of natural bone that has attracted a wide attention in field of biomineralization. This paper summarizes the recent research achievements in bi-template-induced biomimetic self-assembled apatite. The design of bi-template molecule and the interactions between the molecular templates have been investigated as well as the regulation mechanism of apatite nucleation. The bi-template co-assembly strategy as a promising clinical application has been applied on many fields ranging from bone/teeth repair, coatings and drug delivery, due to the improved osteoconductive properties and even osteoinductive properties.
  • 加载中
    1. [1]

      [1] Sadat-Shojai M, Khorasani M T, Dinpanah-Khoshdargi E, et al. Acta Biomater., 2013,9(8):7591-7621

    2. [2]

      [2] YAN Yang(颜扬), XU Xu-Rong(徐旭荣), TANG Rui-Kang (唐睿康). Chinese J. Inorg. Chem.(无机化学学报), 2011,27(11):2105-2115

    3. [3]

      [3] Yoh R, Matsumoto T, Sasaki J, et al. J. Biomed. Mater. Res. A, 2008,87(1):222-228

    4. [4]

      [4] Du C, Falini G, Fermani S, et al. Science, 2005,307(5714): 1450-1454

    5. [5]

      [5] LIU Cui-Lian(刘翠莲), TANG Rui-Kang(唐睿康). Chinese J. Inorg. Chem. (无机化学学报), 2014,30(1):1-9

    6. [6]

      [6] CUI Fu-Zhai(崔福斋). Biominerlization(生物矿化). Beijing: Tsinghua University Press, 2012

    7. [7]

      [7] Ma J, Wang J, Ai X, et al. Biotechnol. Adv., 2014,32(4):744-760

    8. [8]

      [8] Katti D R, Pradhan S M, Katti K S. J. Biomech., 2010,43(9): 1723-1730

    9. [9]

      [9] Gu L, Kim Y K, Liu Y, et al. J. Dent. Res., 2011,90(1):82-87

    10. [10]

      [10] Qiu Z Y, Tao C S, Cui H, et al. Front. Mater. Sci., 2014,8(1):53-62

    11. [11]

      [11] Cui F Z, Li Y, Ge J. Mater. Sci. Eng.:R, 2007,57(1/2/3/4/5/ 6):1-27

    12. [12]

      [12] Hu C, Zilm M, Wei M. J. Biomed. Mater. Res. A, 2016,104(5): 1153-1161

    13. [13]

      [13] Olszta M J, Cheng X, Jee S S, et al. Mater. Sci. Eng. R, 2007,58(3-5):77-116

    14. [14]

      [14] Xu Z, Yang Y, Zhao W, et al. Biomaterials, 2015,39:59-66

    15. [15]

      [15] Vepari C, Kaplan D L. Prog. Polym. Sci., 2007,32(8/9):991-1007

    16. [16]

      [16] Wu F, Lin D D, Chang J H, et al. Cryst. Growth Des., 2015, 15(5):2452-2460

    17. [17]

      [17] Hunter G K, Curtis H A, Grynpas M D, et al. Calcif. Tissue Int., 1999,65(3):226-231

    18. [18]

      [18] He S B, Wu G W, Deng H H, et al. Biosens. Bioelectron, 2014,62:331-336

    19. [19]

      [19] Huh H W, Zhao L, Kim S Y. Carbohydr. Polym., 2015,126: 130-140

    20. [20]

      [20] Jiang H, Liu X Y, Zhang G, et al. J. Biol. Chem., 2005,280(51):42061-42066

    21. [21]

      [21] Kavya K C, Dixit R, Jayakumar R, et al. J. Biomed. Nanotechnol., 2012,8(1):149-160

    22. [22]

      [22] Saravanan S, Leena R S. Selvamurugan N. Int. J. Biol. Macromol., 2016.

    23. [23]

      [23] Jayasuriya A C, Kibbe S. J. Mater. Sci. Mater. Med., 2010, 21(2):393-398

    24. [24]

      [24] Chiono V, Gentile P, Boccafoschi F, et al. Biomacromolecules, 2010,11(2):309-315

    25. [25]

      [25] Ming J, Jiang Z, Wang P, et al. Mater. Sci. Eng. C, 2015,51: 287-293

    26. [26]

      [26] Chen Z, Pan X, Chen H, et al. J. Hazard. Mater., 2016,301: 531-537

    27. [27]

      [27] Yuwono V M, Hartgerink J D. Langmuir, 2007,23(9):5033-5038

    28. [28]

      [28] Ahmed S, Mondal J H, Behera N, et al. Langmuir, 2013,29(46):14274-14283

    29. [29]

      [29] Iyyappan E, Wilson P, Sheela K, et al. Mater. Sci. Eng. C, 2016,63:554-562

    30. [30]

      [30] Bhowmik R, Katti K S, Katti D R. J. Nanosci. Nanotechnol., 2008,8(4):2075-2084

    31. [31]

      [31] Kaygili O, Ates T, Keser S, et al. Spectrochim. Acta A, 2014, 129:268-273

    32. [32]

      [32] Kanchana P, Sekar C. Mater. Sci. Eng. C, 2014,42:601-607

    33. [33]

      [33] LI Yu-Li(李玉莉), CHEN Xiao-Feng(陈晓峰), WANG Ying-Jun(王迎军). J. Inorg. Mater.(无机材料学报), 2007,22(4): 617-621

    34. [34]

      [34] Zhang W, Liao S S, Cui F Z. Chem. Mater., 2003,15:3221-3226

    35. [35]

      [35] Wang J, Yu F, Qu L, et al. Biomed. Mater., 2010,5(4):041002

    36. [36]

      [36] Liu Z X, Wang X M, Wang Q, et al. CrystEngComm, 2012, 14(20):6695

    37. [37]

      [37] Wang J, Zhou W, Hu W, et al. J. Biomed. Mater. Res. A, 2011, 99(3):327-334

    38. [38]

      [38] Wang J L, Yang Q, Mao C B, et al. J. Biomed. Mater. Res. A, 2012,100A(11):2929-2938

    39. [39]

      [39] Wang J, Yang G, Wang Y, et al. Biomacromolecules, 2015, 16(7):1987-1996

    40. [40]

      [40] Deshpande A S, Beniash E. Cryst. Growth Des., 2008,8(8): 3084-3090

    41. [41]

      [41] Zeiger D N, Miles W C, Eidelman N, et al. Langmuir, 2011,27(13):8263-8268

    42. [42]

      [42] He G, Dahl T, Veis A, et al. Nat. Mater., 2003,2(8):552-558

    43. [43]

      [43] Phadke A, Zhang C, Hwang Y, et al. Biomacromolecules, 2010,11(8):2060-2068

    44. [44]

      [44] Fang B, Wan Y Z, Tang T T, et al. Tissue Eng. Part A, 2009, 15(5):1091-1098

    45. [45]

      [45] Lukasheva N V, Tolmachev D A. Langmuir, 2016,32(1):125-134

    46. [46]

      [46] Gao C, Wan Y, Lei X, et al. Cellulose, 2011,18(6):1555-1561

    47. [47]

      [47] Spoerke E D, Anthony S G, Stupp S I. Adv. Mater., 2009,21(4):425-430

    48. [48]

      [48] Xu H, Cao B, George A, et al. Biomacromolecules, 2011,12(6):2193-2199

    49. [49]

      [49] Marelli B, Ghezzi C E, Zhang Y L, et al. Biomaterials, 2015, 37:252-259

    50. [50]

      [50] Kuno T, Nonoyama T, Hirao K, et al. Langmuir, 2011,27(21):13154-13158

    51. [51]

      [51] Sun G, Ma J, Zhang S. Mater. Sci. Eng. C, 2014,39:67-72

    52. [52]

      [52] Wang Y H, Hao H, Li Y, et al. Colloids Surf. B, 2016,140: 297-306

    53. [53]

      [53] Qiu Z Y, Li G, Zhang Y Q, et al. Biomed. Mater., 2012,7(4): 045009

    54. [54]

      [54] Ma J, Qin J. Cryst. Growth Des., 2015,15(3):1273-1279

    55. [55]

      [55] Santos M H, Valerio P, Goes A M, et al. Biomed. Mater., 2007,2(2):135-141

    56. [56]

      [56] Roy M, Bandyopadhyay A, Bose S. J. Biomed. Mater. Res. B, 2011,99(2):258-265

    57. [57]

      [57] Wu B, Mu C, Zhang G, et al. Langmuir, 2009,25(19):11905-11910

    58. [58]

      [58] Zhang E L, Zou C M. Acta Biomater., 2009,5(5):1732-1741

    59. [59]

      [59] Spence G, Phillips S, Campion C, et al. J. Bone Joint Surg. Br., 2008,90(12):1635-1640

    60. [60]

      [60] Bang L T, Long B D, Othman R. Sci. World J., 2014,2014: 969876

    61. [61]

      [61] Fleet M E. Front Biosci. (Elite Ed.), 2013,5:643-652

    62. [62]

      [62] Junginger M, Bleek K, Kita-Tokarczyk K, et al. Nanoscale, 2010,2(11):2440-2446

    63. [63]

      [63] Lobbicke R, Chanana M, Schlaad H, et al. Biomacromolecules, 2011,12(10):3753-3760

    64. [64]

      [64] Wei G, Reichert J, Bossert J, et al. Biomacromolecules, 2008,9(11):3258-3267

    65. [65]

      [65] Zhang L, Song S I, Zheng S, et al. J. Mater. Sci., 2012,48(1):288-298

    66. [66]

      [66] Bian S, Du L W, Gao Y X, et al. Cryst. Growth Des., 2012, 12(7):3481-3488

    67. [67]

      [67] Kong X, Sun X, Cui F, et al. Mater. Sci. Eng. C, 2006,26(4):639-643

    68. [68]

      [68] Seah R K, Garland M, Loo J S, et al. Anal. Chem., 2009,81(4):1442-1449

    69. [69]

      [69] Chai Y C, Carlier A, Bolander J, et al. Acta Biomater., 2012,8(11):3876-3887

    70. [70]

      [70] Anderson J M, Patterson J L, Vines J B, et al. ACS Nano, 2011,5(12):9463-9479

    71. [71]

      [71] Rossi A L, Barreto I C, Maciel W Q, et al. Bone, 2012,50(1):301-310

    72. [72]

      [72] Khanna R, Katti K S, Katti D R. Acta Biomater., 2011,7(3): 1173-1183

    73. [73]

      [73] Liao J, Li Y, Zou Q, et al. Mater. Sci. Eng. C, 2016,63:285-291

    74. [74]

      [74] Cai Q, Feng Q, Liu H, et al. Mater. Lett., 2013,91:275-278

    75. [75]

      [75] Geven M A, Barbieri D, Yuan H, et al. Clin. Hemorheol. Microcirc, 2015,60(1):3-11

    76. [76]

      [76] Yamagishi K, Onuma K, Suzuki T, et al. Nature, 2005,433(7028):819

    77. [77]

      [77] Tian K, Peng M, Ren X, et al. Med. Hypotheses, 2012,79(2):143-146

    78. [78]

      [78] Chen C, Li H, Kong X, et al. Int. J. Nanomed., 2015,10: 283-295

    79. [79]

      [79] Henstock J R, Canham L T, Anderson S I. Acta Biomater., 2015,11:17-26

    80. [80]

      [80] LI Deng-Hu(李登虎), LIN Jun(林军), LIN Dong-Yang (林东洋), et al. J. Inorg. Mater.(无机材料学报), 2011,27(6): 1027-1032

    81. [81]

      [81] Chiu D, Zhou W, Kitayaporn S, et al. Bioconjugate Chem., 2012,23(3):610-617

    82. [82]

      [82] Nardecchia S, Gutierrez M C, Serrano M C, et al. Langmuir, 2012,28(45):15937-15946

  • 加载中
    1. [1]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    2. [2]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    3. [3]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    4. [4]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    5. [5]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    6. [6]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    7. [7]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    8. [8]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    9. [9]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    10. [10]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    11. [11]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    12. [12]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    13. [13]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    14. [14]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

Metrics
  • PDF Downloads(2)
  • Abstract views(358)
  • HTML views(69)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return