Citation: WANG Yu-Xia, QIU Dan, XI Sai-Fei, DING Zheng-Dong, GU Zhi-Guo, LI Zai-Jun. Fabrication and Magnetic Property of Spin Crossover-Graphene Oxide Nanocomposites[J]. Chinese Journal of Inorganic Chemistry, ;2016, 32(11): 1965-1972. doi: 10.11862/CJIC.2016.245 shu

Fabrication and Magnetic Property of Spin Crossover-Graphene Oxide Nanocomposites

  • Corresponding author: GU Zhi-Guo, 
  • Received Date: 28 April 2016
    Available Online: 11 August 2016

    Fund Project:

  • The in-situ growth method were used to produce the[Fe(Htrz)2(trz)](BF4)-GO nanocomposites due to the abundant oxygen functional groups on the surface of the GO templates. The[Fe(Htrz)2(trz)](BF4)-GO nanocomposites have been characterized by PXRD, FTIR, SEM, TEM, Raman spectra. The peaks of FTIR and PXRD patterns of the nanocomposites are nearly the superposition of the spectra of individual GO and[Fe(Htrz)2(trz)](BF4), demonstrating the successful formation of spin crossover-graphene oxide nanocomposites. SEM and TEM analysis intuitively shows the cubic[Fe(Htrz)2(trz)](BF4) nanoparticles uniformly anchored on the surface of GO. Additionally, with the assembly time increasing, the quantity and size of[Fe(Htrz)2(trz)](BF4) on the surface of the GO increase gradually. Raman spectra indicates that the intensity ratio of the D to G band (ID/IG) increases after the[Fe(Htrz)2(trz)](BF4) loaded onto the surface of GO, which reveals that the defects in GO materials structures increase, and the interaction between[Fe(Htrz)2(trz)](BF4) nanoparticles and GO strengthens. Magnetic measurement manifests the transition temperatures of SCO-GO nanocomposites with different assembly time (1, 6, 12 h) are 381.1, 381.5 and 382.4 K in warming, 345.9, 345.0 and 344.8 K in cooling with the hysteresis width of 35.2, 36.5 and 37.6 K, respectively. This is attributed to the variation in the capacity and size of[Fe(Htrz)2(trz)](BF4) in SCO-GO nanocomposites with different assembly time. The result of DSC analysis is consistent with the magnetic result, confirming that the spin transition temperatures of SCO-GO nanocomposites move to high temperature.
  • 加载中
    1. [1]

      [1] Gütlich P, Garcia Y, Goodwin H A. Chem. Soc. Rev., 2000, 29:419-427

    2. [2]

      [2] Bousseksou A, Molnár G, Salmon L, et al. Chem. Soc. Rev., 2011,40:3313-3335

    3. [3]

      [3] Sato O, Tao J, Zhang Y Z. Angew. Chem. Int. Ed., 2007,46: 2152-2187

    4. [4]

      [4] Maspoch D, Ruiz-Molina D, Veciana J. Chem. Soc. Rev., 2007,36:770-818

    5. [5]

      [5] Halcrow M A. Chem. Soc. Rev., 2011,40:4119-4142

    6. [6]

      [6] Ruiz E. Phy. Chem. Chem. Phy., 2014,16:14-22

    7. [7]

      [7] Martinho P N, Rajnak C, Ruben M. Spin-Crossover Materials, 2013:375-404

    8. [8]

      [8] (a) Chen Y, Ma J G, Zhang J J, et al. Chem. Commun., 2010, 46:5073-5075(b) Martinez V, Boldog I, Gaspar A B, et al. Chem. Mater., 2010,22:4271-4281(c) Titos-Padilla S, Herrera J M, Chen X W, et al. Angew. Chem. Int. Ed., 2011,50:3290-3293(d) Faulmann C, Chahine J, Malfant I, et al. Dalton Trans., 2011,40:2480-2485

    9. [9]

      [9] Rao C N R, Sood A K, Subrahmanyam K S, et al. Angew. Chem. Int. Ed., 2009,48:7752-7777

    10. [10]

      [10] Zhu Y, Murali S, Cai W, et al. Adv. Mater., 2010,22:3906-3924

    11. [11]

      [11] Huang X, Yin Z, Wu S, et al. Small, 2011,7:1876-1902

    12. [12]

      [12] (a) Yu L, Chen J, Liang Z, et al. Sep. Purif. Technol., 2016,171:80-87(b) Li M, Yin W, Han X, et al. J. Solid State Electrochem., 2016,20:1941-1948(c) Tai H, Zhen Y, Liu C, et al. Sens. Actuators B:Chem., 2016,230:501-509

    13. [13]

      [13] (a) Yadav H M, Kim J S. J. Alloys Compd., 2016,688:123-129(b) Yan N, Capezzuto F, Lavorgna M, et al. Nanoscale, 2016,8:10783-10791

    14. [14]

      [14] Qiu D, Ren D H, Gu L, et al. RSC Adv., 2014,4: 31323-31327

    15. [15]

      [15] Wick P, Louw-Gaume A E, Kucki M, et al. Angew. Chem. Int. Ed., 2014,53:7714-7718

    16. [16]

      [16] Cong H P, He J J, Lu Y, et al. Small, 2010,6:169-173

    17. [17]

      [17] (a) Chantharasupawong P, Philip R, Narayanan N T, et al. J. Phys. Chem. C, 2012,116:25955-25961(b) Allen M J, Tung V C, Kaner R B. Chem. Rev., 2009,110: 132-145

    18. [18]

      [18] Murashima Y, Karim M R, Saigo N, et al. Inorg. Chem. Front., 2015,2:886-892

    19. [19]

      [19] Cote L J, Kim J, Tung V C, et al. Pure Appl. Chem., 2010,83:95-110

    20. [20]

      [20] Erickson K, Erni R, Lee Z, et al. Adv. Mater., 2010,22: 4467-4472

    21. [21]

      [21] Bhawal P, Ganguly S, Chaki T K, et al. RSC Adv., 2016,6: 20781-20790

    22. [22]

      [22] Petit C, Bandosz T J. J. Mater. Chem., 2009,19:6521-6528

    23. [23]

      [23] Chen D, Feng H, Li J. Chem. Rev., 2012,112:6027-6053

    24. [24]

      [24] (a) Lavrenova L G, Shakirova O G. Eur. J. Inorg. Chem., 2013,2013:670-682(b) Shepherd H J, Molnár G, Nicolazzi W, et al. Eur. J. Inorg. Chem., 2013,2013:653-661(c) Kroeber J, Audiere J P, Claude R, et al. Chem. Mater., 1994,6:1404-1412

    25. [25]

      [25] (a) Bartual-Murgui C, Natividad E, Roubeau O. J. Mater. Chem. C, 2015,3:7916-7924(b) Grosjean A, Négrier P, Bordet P, et al. Eur. J. Inorg. Chem., 2013,2013:796-802(c) Durand P, Pillet S, Bendeif E E, et al. J. Mater. Chem. C, 2013,1:1933-1942(d) Giménez-Marqués M, de Larrea M L G S, Coronado E. J. Mater. Chem. C, 2015,3:7946-7953

    26. [26]

      [26] (a) Lefter C, Tan R, Dugay J, et al. Phys. Chem. Chem. Phys., 2015,17:5151-5154(b) Nagy V, Suleimanov I, Molnár G, et al. J. Mater. Chem. C, 2015,3:7897-7905(c) Qiu D, Gu L, Sun X L, et al. RSC Adv., 2014,4:61313-61319

    27. [27]

      [27] (a) Coronado E, Galán-Mascarós J R, Monrabal-Capilla M, et al. Adv. Mater., 2007,19:1359-1361(b) Dugay J, Giménez-Marqués M, Kozlova T, et al. Adv. Mater., 2015,27:1288-1293

    28. [28]

      [28] (a) Bian Z, Xu J, Zhang S, et al. Langmuir, 2015,31:7410-7417(b) Zhou Q, Zhao Z, Wang Z, et al. Nanoscale, 2014,6: 2286-2291(c) Yang J, Shen X, Zhu G, et al. RSC Adv., 2014,4:386-394

    29. [29]

      [29] Sun Y, Shao D, Chen C, et al. Environ. Sci. Technol., 2013,47:9904-9910

    30. [30]

      [30] (a) Dutta A, Ouyang J. ACS Catal., 2015,5:1371-1380(b) Lin T W, Tasi T T, Chang P L, et al. ACS Appl. Mater. Interfaces, 2016,8:8315-8322(c) Chen S, Zhu J, Wu X, et al. ACS Nano, 2010,4:2822-2830

    31. [31]

      [31] Peng H, Molnár G, Salmon L, et al. Eur. J. Inorg. Chem., 2015,2015:3336-3342

    32. [32]

      [32] (a) Wang Z, Wei R, Liu X. J. Mater. Sci., 2016,51:4682-4690(b) Chen W, Yan L. Nanoscale, 2010,2:559-563

    33. [33]

      [33] Galán-Mascarós J R, Coronado E, Forment-Aliaga A, et al. Inorg. Chem., 2010,49:5706-5714

    34. [34]

      [34] (a) Kahn O, Martinez C J. Science, 1998,279:44-48(b) Wang Y X, Qiu D, Xi S F, et al. Chem. Commun., 2016, 52:8034-8037

    35. [35]

      [35] Volatron F, Catala L, Rivière E, et al. Inorg. Chem., 2008,47:6584-6586

    36. [36]

      [36] (a) Forestier T, Kaiba A, Pechev S, et al. Chem. Eur. J., 2009,15:6122-6130(b) Neville S M, Etrillard C, Asthana S, et al. Eur. J. Inorg. Chem., 2010,2010:282-288

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    3. [3]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    4. [4]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    5. [5]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    6. [6]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    7. [7]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    8. [8]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    9. [9]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    10. [10]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    11. [11]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    12. [12]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    13. [13]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    14. [14]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    15. [15]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    16. [16]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    17. [17]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    18. [18]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    19. [19]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    20. [20]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

Metrics
  • PDF Downloads(0)
  • Abstract views(389)
  • HTML views(48)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return