Citation: WANG Yue, ZOU Xiao-Chuan, WANG Cun, SHI Yong-Fang. Thermolysis Synthesis and Growth Mechanism of Metastable MInS2 (M=Ag, Cu) Flowerlike Microsphere[J]. Chinese Journal of Inorganic Chemistry, ;2016, 32(12): 2151-2157. doi: 10.11862/CJIC.2016.233 shu

Thermolysis Synthesis and Growth Mechanism of Metastable MInS2 (M=Ag, Cu) Flowerlike Microsphere

  • Corresponding author: WANG Yue,  SHI Yong-Fang, 
  • Received Date: 19 July 2016
    Available Online: 17 September 2016

    Fund Project:

  • 3D metastable orthorhombic AgInS2 and hexagonal CuInS2 flowerlike microsphere were synthesized by the thermolysis method. The obtained products were characterized by X-ray diffraction (XRD), field-emission scanning electron microscope (FESEM), and the photocatalytic activity of AgInS2 were investigated. Furthermore, the possible growth mechanism of metastable orthorhombic AgInS2 and hexagonal CuInS2 flowerlike microsphere was also proposed by means of thermogravimetric thermogravimetric and differential thermal analysis (TG-DTA). The results indicated that both the reaction temperature and feed ratio of metallic ion (nM/nIn) had an influence on the formation of pure-phase MInS2, and the prepared AgInS2 flowerlike microsphere could well degrade methylene blue (MB) under visible light irradiation.
  • 加载中
    1. [1]

      [1] Zeng Z, Wang A Q, Ping L L, et al. Mater. Lett., 2015,141:225-227

    2. [2]

      [2] Peng S, Zhang S, Mhaisalkar S G, et al. Phys. Chem. Chem. Phys., 2012,14:8523-8529

    3. [3]

      [3] Liu B J, Li X Y, Zhao Q D, et al. Appl. Catal. B, 2016,185:1-10

    4. [4]

      [4] Chevallier T, Blevennec G L, Chandezon F. Nanoscale, 2016, 8:7612-7620

    5. [5]

      [5] Wu L, Chen S Y, Fan F J, et al. J. Am. Chem. Soc., 2016, 138:5576-5584

    6. [6]

      [6] SUN Qian(孙倩), GUAN Rong-Feng(关荣锋), ZHANG Da-Feng(张大峰). J. Synth. Cryst.(人工晶体学报), 2013,2(1):65-71

    7. [7]

      [7] Lei S J, Wang C Y, Liu L, et al. Chem. Mater., 2013,25:2991-2997

    8. [8]

      [8] Kruszynska M, Borchert H, Parisi J, et al. J. Am. Chem. Soc., 2010,132(45):15976-15986

    9. [9]

      [9] (a)Mohadesi A, Ranjbar M, Karimi M A. J. Mater. Sci.-Mater. Electron., 2016,27:522-525(b)Tang A W, Hu Z L, Yin Z, et al. Dalton Trans., 2015,44:9251-9259

    10. [10]

      [10] Liu Z P, Tang K B, Wang D K, et al. Nanoscale, 2013,5:1570-1575

    11. [11]

      [11] Liu Z P, Wang L L, Hao Q Y, et al. CrystEngComm, 2013,15:7192-7198

    12. [12]

      [12] ZOU Xue-Jue(邹学军), DONG Yu-Ying(董玉瑛), RANG Chun-Qiu(冉春秋), et al. J. Wuhan Univ.:Nat. Sci. Ed.(武汉大学学报:理学版), 2016,62(1):92-96

    13. [13]

      [13] Hu H M,Yang B J, Liu X Y, et al. Inorg. Chem. Commun., 2004,7:563-565

    14. [14]

      [14] Sheng X, Wang L, Luo Y P, et al. Nanoscale Res. Lett., 2011,6:562

    15. [15]

      [15] Abdelhady A L, Malik M A, O'Brien P. J. Mater. Chem., 2012,22(9):3781-3785

    16. [16]

      [16] Connor S T, Hsu C M, Weil B D, et al. J. Am. Chem. Soc., 2009,131(13):4962-4966

    17. [17]

      [17] Qi Y X, Liu Q C, Tang K B, et al. J. Phys. Chem. C, 2009, 113:3939-3944

    18. [18]

      [18] Delgado G, Mora A J, Pineda C, et al. Mater. Res. Bull., 2001,36:2507-2517

    19. [19]

      [19] Tomić S, Bernasconi L, Searle B G, et al. J. Phys. Chem. C, 2014,118:14478-14484

    20. [20]

      [20] Shan J N, Ju Y G. Appl. Phys. Lett., 2007,91(12):123103

    21. [21]

      [21] Jia C J, Sun L D, You L P, et al. J. Phys. Chem. B, 2005, 109(8):3284-3290

    22. [22]

      [22] (a)ZOU Zheng-Guang(邹正光), GAO Yao(高耀), LONG Fei (龙飞). J. Synth. Cryst.(人工晶体学报), 2015,44(8):2164-2170(b)Shi Y F, Wang Y, Wu L M. J. Phys. Chem. C, 2013,117:20054-20059

    23. [23]

      [23] Lu X, Zhuang Z, Peng Q, et al. CrystEngComm, 2011,13(12):4039-4045

    24. [24]

      [24] Fang F, Chen L, Chen Y B, et al. J. Phys. Chem. C, 2010, 114:2393-2397

    25. [25]

      [25] Liu J J, Chen S F, Liu Q Z, et al. Comp. Mater. Sci., 2014, 91:159-164

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    3. [3]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    4. [4]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    5. [5]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    6. [6]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    7. [7]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    8. [8]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    9. [9]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    10. [10]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    11. [11]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    12. [12]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    13. [13]

      Shengwen GuanZhaotong WeiNingxu HanYude WeiBin XuMing WangJunjuan Shi . Construction of metallo-complexes with 2,2′:6′,2″-terpyridine substituted triphenylamine in different modified positions and their photophysical properties. Chinese Chemical Letters, 2024, 35(7): 109348-. doi: 10.1016/j.cclet.2023.109348

    14. [14]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    15. [15]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    16. [16]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    17. [17]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    18. [18]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    19. [19]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    20. [20]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

Metrics
  • PDF Downloads(0)
  • Abstract views(226)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return