Citation: MEI Su-Juan, WU Jun-Jie, LU Shuang-Long, CAO Xue-Qin, GU Hong-Wei, TANG Ming-Hua. Facile Synthesis of Concave Dendritic PtCu Nanoparticles with Enhanced Methanol Electro-oxidation Activities[J]. Chinese Journal of Inorganic Chemistry, ;2015, (12): 2298-2304. doi: 10.11862/CJIC.2015.317 shu

Facile Synthesis of Concave Dendritic PtCu Nanoparticles with Enhanced Methanol Electro-oxidation Activities

  • Corresponding author: GU Hong-Wei, 
  • Received Date: 19 May 2015
    Available Online: 3 October 2015

    Fund Project: 国家自然科学基金(No.21373006) (No.21373006)

  • Concave dendritic PtCu bimetallic nanocatalysts (PtCu NCDs) was prepared by one-step method in a Teflon-lined stainless steel autoclave with o-phenylenediamine as surface active agent. In the reaction system, o-phenylenediamine plays an important role in initiating, promoting and guiding replacement reaction. The PtCu NCDs exhibited exceptionally high activity and strong poisoning resistance in methanol oxidation reaction (MOR). The mass activity of PtCu NCDs (0.53 A·mg-1 Pt) was 2.04 times higher than that of the commercial Pt/C catalysts (0.26 A·mg-1 Pt) in MOR. The specific activity of PtCu NCDs (1.07 mA·cm-2) was 1.95 times higher than that of the commercial Pt/C catalysts (0.55 mA·cm-2). Moreover, PtCu NCDs (2.76) showed a higher ratio of If/Ib than the commercial Pt/C catalysts (1.02). The enhanced catalytic activity could be owed to the unique concave dendritic morphology of the bimetallic nanoparticles.
  • 加载中
    1. [1]

      [1] Chen J, Lim B, Lee E P, et al. Nano Today, 2009,4(1):81-95

    2. [2]

      [2] Peng Z, Yang H. Nano Today, 2009,4(2):143-164

    3. [3]

      [3] Lim B, Jiang M, Camargo P H C, et al. Science, 2009,324 (5932):1302-1305

    4. [4]

      [4] Larsson E M, Alegret J, Kll M, et al. Nano Lett., 2007,7(5): 1256-1263

    5. [5]

      [5] Alivisatos P. Nat. Biotechnol., 2004,22(1):47-52

    6. [6]

      [6] Huang X, El-Sayed I H, Qian W, et al. J. Am. Chem. Soc., 2006,128(6):2115-2120

    7. [7]

      [7] Mulvihill M J, Ling X Y, Henzie J, et al. J. Am. Chem. Soc., 2009,132(1):268-274

    8. [8]

      [8] Zhou K, Li Y. Angew. Chem., Int. Ed., 2012,51(3):602-613

    9. [9]

      [9] Tian N, Zhou Z Y, Sun S G, et al. Science, 2007,316(5825): 732-735

    10. [10]

      [10] Guo S, Zhang S, Sun X, et al. J. Am. Chem. Soc., 2011,133 (39):15354-15357

    11. [11]

      [11] Guo S, Dong S, Wang E. ACS Nano, 2009,4(1):547-555

    12. [12]

      [12] Wu H, Li H, Zhai Y, et al. Adv. Mater., 2012,24(12):1594- 1597

    13. [13]

      [13] Chen A. Chem. Rev., 2010,110(6):3767-3804

    14. [14]

      [14] Yoo S J, Jeon T Y, Kim K S, et al. Phys. Chem. Chem. Phys., 2010,12(46):15240-15246

    15. [15]

      [15] Yin A X, Min X Q, Zhu W, et al. Chem. Eur. J., 2012,18 (3):777-782

    16. [16]

      [16] Kugai J, Moriya T, Seino S, et al. Int. J. Hydrogen Energy, 2012,37(6):4787-4797

    17. [17]

      [17] Huang X, Zhao Z, Fan J, et al. J. Am. Chem. Soc., 2011, 133(13):4718-4721

    18. [18]

      [18] Stamenkovic V R, Fowler B, Mun B S, et al. Science, 2007, 315(5811):493-497

    19. [19]

      [19] Stamenkovic V R, Mun B S, Arenz M, et al. Nat. Mater., 2007,6(3):241-247

    20. [20]

      [20] Strasser P, Koh S, Anniyev T, et al. Nat. Chem., 2010,2(6): 454-460

    21. [21]

      [21] Liu Y, Li D, Stamenkovic V R, et al. ACS Catal., 2011,1 (12):1719-1723

    22. [22]

      [22] Kang Y, Pyo J B, Ye X, et al. ACS Nano, 2012,6(6):5642- 5647

    23. [23]

      [23] Xia B Y, Wu H B, Wang X, et al. J. Am. Chem. Soc., 2012, 134(34):13934-13937

    24. [24]

      [24] Gasteiger H A, Markovic N M. Science, 2009,324(5923):48- 49

    25. [25]

      [25] Gasteiger H A, Kocha S S, Sompalli B, et al. Appl. Catal., B, 2005,56(1):9-35

    26. [26]

      [26] Stephens I E L. Angew. Chem., Int. Ed., 2011,50(7):1476- 1477

    27. [27]

      [27] Greeley J, Stephens I E L. Nat. Chem., 2009,1(7):552-556

    28. [28]

      [28] Zeng J, Zhang Q, Chen J, et al. Nano Lett., 2009,10(1):30-35

    29. [29]

      [29] Yamauchi Y, Sugiyama A, Morimoto R, et al. Angew. Chem., Int. Ed., 2008,47(29):5371-5373

    30. [30]

      [30] Prevo B G, Esakoff S A, Mikhailovsky A, et al. Small, 2008, 4(8):1183-1195

    31. [31]

      [31] Yin Y, Erdonmez C, Aloni S, et al. J. Am. Chem. Soc., 2006, 128(39):12671-12673

    32. [32]

      [32] Schwartzberg A M, Olson T Y, Talley C E, et al. J. Phys. Chem. B, 2006,110(40):19935-19944

    33. [33]

      [33] Wu Y, Wang D, Niu Z, et al. Angew. Chem., Int. Ed., 2012, 51(50):12524-12528

    34. [34]

      [34] Yavuz M S, Cheng Y, Chen J, et al. Nat. Mater., 2009,8(12): 935-939

    35. [35]

      [35] Xu D, Liu Z, Yang H, et al. Angew. Chem., Int. Ed., 2009, 48(23):4217-4221

    36. [36]

      [36] Koh S, Strasser P. J. Am. Chem. Soc., 2007,129(42):12624- 12625

    37. [37]

      [37] Kibsgaard J, Gorlin Y, Chen Z, et al. J. Am. Chem. Soc., 2012,134(18):7758-7765

    38. [38]

      [38] Liu H, Nosheen F, Wang X. Chem. Soc. Rev., 2015,44(10): 3056-3078

    39. [39]

      [39] Tseng Y C, Chen H S, Liu C W, et al. J. Mater. Chem. A, 2014,2(12):4270-4275

    40. [40]

      [40] Shiraishi Y, Sakamoto H, Sugano Y, et al. ACS Nano, 2013, 7(10):9287-9297

    41. [41]

      [41] Xu C, Liu Y, Wang J, et al. J. Power Sources, 2012,199:124 -131

    42. [42]

      [42] Zhang Z, Yang Y, Wosheen F, et al. Small, 2013,9(18):3063 -3069

    43. [43]

      [43] Jin R C, Cao Y W, Mirkin C, et al. Science, 2001,294(5548): 1901-1903

    44. [44]

      [44] Mohanty A, Garg N, Jin R C. Angew. Chem. Int. Ed., 2010, 49(29):4962-4966

    45. [45]

      [45] Lim B, Lu X, Jiang M, et al. Nano Lett., 2008,8(11):4043- 4047

  • 加载中
    1. [1]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    2. [2]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    3. [3]

      Tong WUYi ZHONGWeimin ZHAOHong XUZhiping MAOLinping ZHANG . BiOBr/NH2-MIL-101(Fe): Preparation and performance on photocatalytic reduction of CO2. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1765-1775. doi: 10.11862/CJIC.20250103

    4. [4]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    5. [5]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    6. [6]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    7. [7]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    8. [8]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    9. [9]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    10. [10]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    11. [11]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    12. [12]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    13. [13]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    14. [14]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    15. [15]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    16. [16]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    17. [17]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    18. [18]

      Liu LinZemin SunHuatian ChenLian ZhaoMingyue SunYitao YangZhensheng LiaoXinyu WuXinxin LiCheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019

    19. [19]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    20. [20]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

Metrics
  • PDF Downloads(0)
  • Abstract views(341)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return