Citation: MEI Su-Juan, WU Jun-Jie, LU Shuang-Long, CAO Xue-Qin, GU Hong-Wei, TANG Ming-Hua. Facile Synthesis of Concave Dendritic PtCu Nanoparticles with Enhanced Methanol Electro-oxidation Activities[J]. Chinese Journal of Inorganic Chemistry, ;2015, (12): 2298-2304. doi: 10.11862/CJIC.2015.317 shu

Facile Synthesis of Concave Dendritic PtCu Nanoparticles with Enhanced Methanol Electro-oxidation Activities

  • Corresponding author: GU Hong-Wei, 
  • Received Date: 19 May 2015
    Available Online: 3 October 2015

    Fund Project: 国家自然科学基金(No.21373006) (No.21373006)

  • Concave dendritic PtCu bimetallic nanocatalysts (PtCu NCDs) was prepared by one-step method in a Teflon-lined stainless steel autoclave with o-phenylenediamine as surface active agent. In the reaction system, o-phenylenediamine plays an important role in initiating, promoting and guiding replacement reaction. The PtCu NCDs exhibited exceptionally high activity and strong poisoning resistance in methanol oxidation reaction (MOR). The mass activity of PtCu NCDs (0.53 A·mg-1 Pt) was 2.04 times higher than that of the commercial Pt/C catalysts (0.26 A·mg-1 Pt) in MOR. The specific activity of PtCu NCDs (1.07 mA·cm-2) was 1.95 times higher than that of the commercial Pt/C catalysts (0.55 mA·cm-2). Moreover, PtCu NCDs (2.76) showed a higher ratio of If/Ib than the commercial Pt/C catalysts (1.02). The enhanced catalytic activity could be owed to the unique concave dendritic morphology of the bimetallic nanoparticles.
  • 加载中
    1. [1]

      [1] Chen J, Lim B, Lee E P, et al. Nano Today, 2009,4(1):81-95

    2. [2]

      [2] Peng Z, Yang H. Nano Today, 2009,4(2):143-164

    3. [3]

      [3] Lim B, Jiang M, Camargo P H C, et al. Science, 2009,324 (5932):1302-1305

    4. [4]

      [4] Larsson E M, Alegret J, Kll M, et al. Nano Lett., 2007,7(5): 1256-1263

    5. [5]

      [5] Alivisatos P. Nat. Biotechnol., 2004,22(1):47-52

    6. [6]

      [6] Huang X, El-Sayed I H, Qian W, et al. J. Am. Chem. Soc., 2006,128(6):2115-2120

    7. [7]

      [7] Mulvihill M J, Ling X Y, Henzie J, et al. J. Am. Chem. Soc., 2009,132(1):268-274

    8. [8]

      [8] Zhou K, Li Y. Angew. Chem., Int. Ed., 2012,51(3):602-613

    9. [9]

      [9] Tian N, Zhou Z Y, Sun S G, et al. Science, 2007,316(5825): 732-735

    10. [10]

      [10] Guo S, Zhang S, Sun X, et al. J. Am. Chem. Soc., 2011,133 (39):15354-15357

    11. [11]

      [11] Guo S, Dong S, Wang E. ACS Nano, 2009,4(1):547-555

    12. [12]

      [12] Wu H, Li H, Zhai Y, et al. Adv. Mater., 2012,24(12):1594- 1597

    13. [13]

      [13] Chen A. Chem. Rev., 2010,110(6):3767-3804

    14. [14]

      [14] Yoo S J, Jeon T Y, Kim K S, et al. Phys. Chem. Chem. Phys., 2010,12(46):15240-15246

    15. [15]

      [15] Yin A X, Min X Q, Zhu W, et al. Chem. Eur. J., 2012,18 (3):777-782

    16. [16]

      [16] Kugai J, Moriya T, Seino S, et al. Int. J. Hydrogen Energy, 2012,37(6):4787-4797

    17. [17]

      [17] Huang X, Zhao Z, Fan J, et al. J. Am. Chem. Soc., 2011, 133(13):4718-4721

    18. [18]

      [18] Stamenkovic V R, Fowler B, Mun B S, et al. Science, 2007, 315(5811):493-497

    19. [19]

      [19] Stamenkovic V R, Mun B S, Arenz M, et al. Nat. Mater., 2007,6(3):241-247

    20. [20]

      [20] Strasser P, Koh S, Anniyev T, et al. Nat. Chem., 2010,2(6): 454-460

    21. [21]

      [21] Liu Y, Li D, Stamenkovic V R, et al. ACS Catal., 2011,1 (12):1719-1723

    22. [22]

      [22] Kang Y, Pyo J B, Ye X, et al. ACS Nano, 2012,6(6):5642- 5647

    23. [23]

      [23] Xia B Y, Wu H B, Wang X, et al. J. Am. Chem. Soc., 2012, 134(34):13934-13937

    24. [24]

      [24] Gasteiger H A, Markovic N M. Science, 2009,324(5923):48- 49

    25. [25]

      [25] Gasteiger H A, Kocha S S, Sompalli B, et al. Appl. Catal., B, 2005,56(1):9-35

    26. [26]

      [26] Stephens I E L. Angew. Chem., Int. Ed., 2011,50(7):1476- 1477

    27. [27]

      [27] Greeley J, Stephens I E L. Nat. Chem., 2009,1(7):552-556

    28. [28]

      [28] Zeng J, Zhang Q, Chen J, et al. Nano Lett., 2009,10(1):30-35

    29. [29]

      [29] Yamauchi Y, Sugiyama A, Morimoto R, et al. Angew. Chem., Int. Ed., 2008,47(29):5371-5373

    30. [30]

      [30] Prevo B G, Esakoff S A, Mikhailovsky A, et al. Small, 2008, 4(8):1183-1195

    31. [31]

      [31] Yin Y, Erdonmez C, Aloni S, et al. J. Am. Chem. Soc., 2006, 128(39):12671-12673

    32. [32]

      [32] Schwartzberg A M, Olson T Y, Talley C E, et al. J. Phys. Chem. B, 2006,110(40):19935-19944

    33. [33]

      [33] Wu Y, Wang D, Niu Z, et al. Angew. Chem., Int. Ed., 2012, 51(50):12524-12528

    34. [34]

      [34] Yavuz M S, Cheng Y, Chen J, et al. Nat. Mater., 2009,8(12): 935-939

    35. [35]

      [35] Xu D, Liu Z, Yang H, et al. Angew. Chem., Int. Ed., 2009, 48(23):4217-4221

    36. [36]

      [36] Koh S, Strasser P. J. Am. Chem. Soc., 2007,129(42):12624- 12625

    37. [37]

      [37] Kibsgaard J, Gorlin Y, Chen Z, et al. J. Am. Chem. Soc., 2012,134(18):7758-7765

    38. [38]

      [38] Liu H, Nosheen F, Wang X. Chem. Soc. Rev., 2015,44(10): 3056-3078

    39. [39]

      [39] Tseng Y C, Chen H S, Liu C W, et al. J. Mater. Chem. A, 2014,2(12):4270-4275

    40. [40]

      [40] Shiraishi Y, Sakamoto H, Sugano Y, et al. ACS Nano, 2013, 7(10):9287-9297

    41. [41]

      [41] Xu C, Liu Y, Wang J, et al. J. Power Sources, 2012,199:124 -131

    42. [42]

      [42] Zhang Z, Yang Y, Wosheen F, et al. Small, 2013,9(18):3063 -3069

    43. [43]

      [43] Jin R C, Cao Y W, Mirkin C, et al. Science, 2001,294(5548): 1901-1903

    44. [44]

      [44] Mohanty A, Garg N, Jin R C. Angew. Chem. Int. Ed., 2010, 49(29):4962-4966

    45. [45]

      [45] Lim B, Lu X, Jiang M, et al. Nano Lett., 2008,8(11):4043- 4047

  • 加载中
    1. [1]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    4. [4]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    5. [5]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    6. [6]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    7. [7]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    8. [8]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    9. [9]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    10. [10]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    11. [11]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    12. [12]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    13. [13]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    14. [14]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    15. [15]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    16. [16]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    17. [17]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    18. [18]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    19. [19]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    20. [20]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

Metrics
  • PDF Downloads(0)
  • Abstract views(161)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return