Citation: ZENG Han, YANG Yang, ZHAO Shu-Xian. Catalytic Effect of Two Kinds of Functionalized Nano-Gold Particles with Immobilized Enzymes Modified Electrodes[J]. Chinese Journal of Inorganic Chemistry, ;2015, (12): 2305-2314. doi: 10.11862/CJIC.2015.316 shu

Catalytic Effect of Two Kinds of Functionalized Nano-Gold Particles with Immobilized Enzymes Modified Electrodes

  • Corresponding author: ZENG Han, 
  • Received Date: 30 August 2015
    Available Online: 20 October 2015

    Fund Project: 国家自然科学基金(No.21363024) (No.21363024)新疆师范大学博士科研启动基金(No.XJNUBS1228) (No.XJNUBS1228)新疆维吾尔自治区2013年度高校科研计划青年 教师培育项目(No.XJEDU2013S29) (No.XJEDU2013S29)新疆师范大学研究生科技创新项目(No.XSY201502009)资助。 (No.XSY201502009)

  • Synthesized 4-mercaptobenzoic acid functionalized nano-gold particles and poly(vinylpyridine) overlapped nanogold-particles, were used as enzyme carriers to prepare two kinds of novel enzyme-based electrodes, respectively. Two prototypes of enzyme-based fuel cells were fabricated on the basis of previously described electrodes. Morphology of matrix with immobilized enzymes, influences of interaction between enzyme molecules and carriers on spectrometric characteristics of electrode surface anchored enzyme molecules, direct electron transfer dynamics between enzyme active centers and electrodes and catalytic function in substrate involved reaction, were investigated by the means of electrochemical method together with such techniques as ultra-violet/visible spectrometry(UV-Vis) and transmission electron microscope(TEM). Energy out-put performances for two kinds of fabricated enzyme-based fuel cells were evaluated and compared systematically. Results from test indicated 4-mercaptobenzoic acid surface-tailored nano-gold particles with enzymes modified electrodes displayed direct electron transfer between enzyme active sites and electrode, revealing favorable catalytic effect on glucose electro-oxidation and oxygen electro-reduction(catalytic reaction onset potential for glucose oxidationn and oxygen reduction: -0.03 and 0.96 V, turn-over frequency of substrates: 1.3 and 0.5 s-1, respectively). Reproducibility, long-term usability, acid/base endurance and thermal stability in catalytic function of previously mentioned electrode were preferable. Catalytic effect in substrate-related reaction of enzyme-based electrode increased with the thickness of self-assembled immobilized enzyme layers until approaching to maximal catalytic current. Test on performance of fuel cell showed open circuit voltage(OCV, 0.88 V), maximal out-put energy density(864.0 μW·cm-2) and excellent long-term stability(retaining above 80% of optimal energy out-put after storage for 3 weeks).
  • 加载中
    1. [1]

      [1] Coman V, Vaz-Dominguez C, Ludwig R, et al. Phys. Chem. Chem. Phys., 2008,10(40):6093-6096

    2. [2]

      [2] Willner I, Yan Y M, Willner B, et al. Fuel Cells, 2009,9(1): 7-24

    3. [3]

      [3] Ivanov I, Vidakovic-Koch T, Sundmacher K. Energies, 2010, 3(4):803-846

    4. [4]

      [4] Stolarczyk K, Nazaruk E, Rogalski J, et al. Electrochem. Commun., 2007,9(1):115-118

    5. [5]

      [5] Wei W, Li P P, Li Y, et al. Electrochem. Commun., 2012, 22:181-184

    6. [6]

      [6] Lesniewski A, Niedziolka-Jonsson J, Rizzi C, et al. Electro- chem. Commun., 2010,12(1):83-85

    7. [7]

      [7] Arrocha A A, Cano-Castillo U, Aguila S A, et al. Biosens. Bioelectron., 2014,61:569-574

    8. [8]

      [8] Katz E, Riklin A, Heleg-Shabtai V, et al. Anal. Chim. Acta, 1999,385(1/2/3):45-58

    9. [9]

      [9] Zelechowska K, Stolarczyk K, Lyp D, et al. Biocybern. Biomed. Eng., 2013,33:235-245

    10. [10]

      [10] Umasankar Y, Brooks D B, Brown B, et al. Adv. Energy Mater., 2014,4(6):1-9

    11. [11]

      [11] Kizling M, Stolarczyk K, Kiat J S S, et al. Electrochem. Commun., 2015,50:55-59

    12. [12]

      [12] Deng M F, Zhao H, Zhang S P, et al. J. Mol. Catal. B: Enzym., 2015,112:15-24

    13. [13]

      [13] Blandford C F, Heath R S, Armstrong F A. Chem. Commun., 2007,43:1710-1712

    14. [14]

      [14] Pang H L, Liu J, Hu D, et al. Electrochim. Acta, 2010,55 (22):6611-6616

    15. [15]

      [15] Qiu H J, Xu C X; Huang X R, et al. J. Phys. Chem. C, 2008,112(38):14781-14785

    16. [16]

      [16] Lioubashevski O, Chegel V I, Patolsky F, et al. J. Am. Chem. Soc., 2004,126(22):7133-7143

    17. [17]

      [17] Pita M, Shleev S, Ruzgas T, et al. Electrochem. Commun., 2006,8(5):747-753

    18. [18]

      [18] Thorum M S, Anderson C A, Hatch J J, et al. J. Phys. Chem. Lett., 2010,1(15):2251-2254

    19. [19]

      [19] Rahman M A, Noh H B, Shim Y B. Anal. Chem., 2008,80 (21):8020-8027

    20. [20]

      [20] Zayats M, Katz E, Baron R, et al. J. Am. Chem. Soc., 2005, 127(35):12400-12406

    21. [21]

      [21] Hao E C, Lian T Q. Chem. Mater., 2000,12(11):3392-3396

    22. [22]

      [22] Szamocki R, Flexer V, Levin L, et al. Electrochim. Acta, 2009,54(7):1970-1977

    23. [23]

      [23] HUANG Jun(黄俊), ZHOU Ju-Ying(周菊英), XIAO Hai- Yan(肖海燕), et al. Acta Chim. Sinica(化学学报), 2005,63 (14):1343-1347

    24. [24]

      [24] Zhao H Y, Zhou H M, Zhang J X, et al. Biosens. Bioelectron., 2009,25(2):463-468

    25. [25]

      [25] Shleev S, Christenson A, Serezhenkov V, et al. Biochem. J., 2005,385:745-754

    26. [26]

      [26] Liu Y, Wang M K, Zhao F, et al. Biosens. Bioelectron., 2005,21(6):984-988

    27. [27]

      [27] Palmer A E, Randall D W, Xu F, et al. J. Am. Chem. Soc., 1999,121(30):7138-7149

    28. [28]

      [28] Dimcheva N, Horozova E. Biochemistry, 2013,90:1-7

    29. [29]

      [29] Zeng H, Tang Z Q, Liao L W, et al. Chin. J. Chem. Phys., 2011,12(36):10888-10895

    30. [30]

      [30] Tsujimura S, Kamitaka Y, Kano K, et al. Fuel Cells, 2007, 7(6):463-469

    31. [31]

      [31] Stolarczyk K, Sepelowska M, Lyp D, et al. Bioelectrochemistry, 2012,87:154-163

    32. [32]

      [32] Jiang D S, Long S Y, Huang J, et al. Biochem. Eng. J., 2005, 25(1):15-23

    33. [33]

      [33] Clot S, Gutierrez-Sanchez C, Shleev S, et al. Electrochem. Commun., 2012,18:37-40

    34. [34]

      [34] Mano N, Kim H H, Zhang Y C, et al. J. Am. Chem. Soc., 2002,124(22):6480-6486

    35. [35]

      [35] Liu Y, Qu X H, Guo H W, et al. Biosens. Bioelectron., 2006,21(12):2195-2201

  • 加载中
    1. [1]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    2. [2]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    3. [3]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    6. [6]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    7. [7]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    8. [8]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    9. [9]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    10. [10]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    11. [11]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    12. [12]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    13. [13]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    14. [14]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    15. [15]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    16. [16]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    17. [17]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    18. [18]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    19. [19]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    20. [20]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

Metrics
  • PDF Downloads(0)
  • Abstract views(236)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return