Citation: LIU Mei-Pin, HU Yu-Xiang, DU Hong-Bin. Layered Titanosilicates as Energy Storage Anode Materials for Lithium Ion Batteries[J]. Chinese Journal of Inorganic Chemistry, ;2015, (12): 2425-2431. doi: 10.11862/CJIC.2015.315 shu

Layered Titanosilicates as Energy Storage Anode Materials for Lithium Ion Batteries

  • Corresponding author: DU Hong-Bin, 
  • Received Date: 21 August 2015
    Available Online: 13 October 2015

    Fund Project: 国家重点基础研究发展计划(No.2011CB808704) (No.2011CB808704)国家自然科学基金(No.21471075) (No.21471075)

  • Rechargeable lithium-ion batteries (LIBs) have become the dominant power source for portable devices. In search for new and better electrode materials for LIBs for future stationary storage, electronic devices and equipments, people have recently started to look over crystalline ion-exchange materials with open channels that facilitate fast lithium ion transportation through the porous network. Herein, the use of Li-exchanged titanosilicate Na-JDF-L1 with a layered structure as anode materials for LIBs was reported. It shows a discharge capacity of 364 mAh·g-1 after the 200th cycle with ca. 100% Coulombic efficiency and negligible loss of capacity, comparable with the lithium titanate anode. Furthermore, the incorporation of TiO2 in Li(Na)-JDF-L1 improves the electrochemical performance of the electrode with better initial Coulombic efficiency and higher rate performance.
  • 加载中
    1. [1]

      [1] (a)Tarascon J M, Armand M. Nature, 2001,414:359-367 (b)Choi N S, Chen Z H, Freunberger S A, et al. Angew. Chem. Int. Ed., 2012,51:9994-10024

    2. [2]

      [2] (a)Chan C K, Patel R N, O'Connell M J, et al. ACS Nano, 2010,4:1443-1450 (b)Hatchard T D, Dahn J R. J. Electrochem. Soc., 2004,151: A838-A842 (c)Idota Y, Kubota T, Matsufuji A, et al. Science, 1997,276: 1395-1397 (d)Park C M, Sohn H J. Adv. Mater., 2007,19:2465-2466

    3. [3]

      [3] (a)Wu Y P, Holze R. J. Solid State Eletrochem., 2003,8:73- 78 (b)Chang J C, Tzeng Y F, Chen J M, et al. Electrochim. Acta, 2009,54:7066-7070

    4. [4]

      [4] (a)Jung H G, Jang M W, Hassoun J, et al. Nat. Commum., 2011,2:516 (b)Shen L F, Uchaker E, Zhang X G, et al. Adv. Mater., 2012,24:6502-6506

    5. [5]

      [5] Fleischhammer M, Waldmann T, Bisle G, et al. J. Power Sources, 2015,274:432-439

    6. [6]

      [6] Fulvio P F, Brown S S, Adcock J, et al. Chem. Mater., 2011, 23:4420-4427

    7. [7]

      [7] (a)Schnorr J M, Swager T M. Chem. Mater., 2011,23:646- 657 (b)Goodenough J B, Kim Y. Chem. Mater., 2010,22:587-603 (c)Manthiram A. J. Phys. Chem. Lett., 2011,2:176-178

    8. [8]

      [8] (a)Prakash A S, Manikandan P, Ramesha K, et al. Chem. Mater., 2010,22:2857-2863 (b)Wang Y Q, Gu L, Guo Y G, et al. J. Am. Chem. Soc., 2012,134:7874-7879 (c)Li C C, Li Q H, Chen L B, et al. ACS Appl. Mater. Interfaces, 2012,4:1233-1238

    9. [9]

      [9] Amine K, Belharouak I, Chen Z, et al. Adv. Mater., 2010, 22:3052-3057

    10. [10]

      [10] (a)Koudriachova M V, Harrison N M, de Leeuw S W. Solid State Ionics, 2003,157:35-38 (b)Vu A, Qian Y, Stein A. Adv. Energy Mater., 2012,2:1056 -1085

    11. [11]

      [11] (a)Rangappa D, Murukanahally K D, Tomai T, et al. Nano Lett., 2012,12:1146-1151 (b)Ellis B L, Makahnouk W R M, Makimura Y, et al. Nat. Mater., 2007,6:749-753 (c)Recham N, Chotard J N, Dupont L, et al. Nat. Mater., 2010,9:68-74 (d)Barpanda P, Ati M, Melot B C, et al. Nat. Mater., 2011, 10:772-779 (e)Tripathi R, Ramesh T N, Ellis B L, et al. Angew. Chem. Int. Ed., 2010,49:8738-8742

    12. [12]

      [12] Patoux S, Masquelier C. Chem. Mater., 2002,14:5057-5068

    13. [13]

      [13] Milne N A, Griffith C S, Hanna J V, et al. Chem. Mater., 2006,18:3192-3202

    14. [14]

      [14] (a)Roberts M A, Sankar G, Thomas J M, et al. Nature, 1996, 381:401-403 (b)Du H, Fang M, Chen J, et al. J. Mater. Chem., 1996,6: 1827-1830

    15. [15]

      [15] (a)Anderson M W, Terasaki O, Oshuna T, et al. Philos. Mag. B, 1995,71:813-841 (b)Lin Z, Rocha J, Brando P, et al. J. Phys. Chem., 1997, 101:7114-7120

    16. [16]

      [16] Rubio C, Casado C, Gorgojo P, et al. Eur. J. Inorg. Chem., 2010,1:159-163

    17. [17]

      [17] Aurbach D, Zaban A. J. Electroanal. Chem., 1995,393:43- 53

    18. [18]

      [18] Cao Y, Xiao L, Ai X, et al. Electrochem. Solid State, 2003, 6:A30-A33

    19. [19]

      [19] (a)Tang M, Newman J. J. Electrochem. Soc., 2012,159:A1922 -A1927 (b)Park M S, Kim J H, Jo Y N, et al. J. Mater. Chem., 2011, 21:17960-17966

    20. [20]

      [20] Yan N, Wang F, Zhong H, et al. Sci. Rep., 2013,3:1568

    21. [21]

      [21] (a)Spotnitz R, Franklin J. J. Power Sources, 2003,113:81- 100 (b)Lee S B, Pyun S I. Carbon, 2002,40:2333-2339 (c)He Y B, Liu M, Huang Z D, et al. J. Power Sources, 2013,239:269-276

    22. [22]

      [22] Jouan P Y, Peignon M C, Cardinaud C, et al. Appl. Surf. Sci., 1993,68:595-603

  • 加载中
    1. [1]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    2. [2]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    3. [3]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    4. [4]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    5. [5]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    6. [6]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    7. [7]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    8. [8]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    9. [9]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    10. [10]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    11. [11]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    12. [12]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    13. [13]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    14. [14]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    15. [15]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    16. [16]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    17. [17]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    18. [18]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    19. [19]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    20. [20]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

Metrics
  • PDF Downloads(0)
  • Abstract views(322)
  • HTML views(90)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return