Citation: LIU Mei-Pin, HU Yu-Xiang, DU Hong-Bin. Layered Titanosilicates as Energy Storage Anode Materials for Lithium Ion Batteries[J]. Chinese Journal of Inorganic Chemistry, ;2015, (12): 2425-2431. doi: 10.11862/CJIC.2015.315 shu

Layered Titanosilicates as Energy Storage Anode Materials for Lithium Ion Batteries

  • Corresponding author: DU Hong-Bin, 
  • Received Date: 21 August 2015
    Available Online: 13 October 2015

    Fund Project: 国家重点基础研究发展计划(No.2011CB808704) (No.2011CB808704)国家自然科学基金(No.21471075) (No.21471075)

  • Rechargeable lithium-ion batteries (LIBs) have become the dominant power source for portable devices. In search for new and better electrode materials for LIBs for future stationary storage, electronic devices and equipments, people have recently started to look over crystalline ion-exchange materials with open channels that facilitate fast lithium ion transportation through the porous network. Herein, the use of Li-exchanged titanosilicate Na-JDF-L1 with a layered structure as anode materials for LIBs was reported. It shows a discharge capacity of 364 mAh·g-1 after the 200th cycle with ca. 100% Coulombic efficiency and negligible loss of capacity, comparable with the lithium titanate anode. Furthermore, the incorporation of TiO2 in Li(Na)-JDF-L1 improves the electrochemical performance of the electrode with better initial Coulombic efficiency and higher rate performance.
  • 加载中
    1. [1]

      [1] (a)Tarascon J M, Armand M. Nature, 2001,414:359-367 (b)Choi N S, Chen Z H, Freunberger S A, et al. Angew. Chem. Int. Ed., 2012,51:9994-10024

    2. [2]

      [2] (a)Chan C K, Patel R N, O'Connell M J, et al. ACS Nano, 2010,4:1443-1450 (b)Hatchard T D, Dahn J R. J. Electrochem. Soc., 2004,151: A838-A842 (c)Idota Y, Kubota T, Matsufuji A, et al. Science, 1997,276: 1395-1397 (d)Park C M, Sohn H J. Adv. Mater., 2007,19:2465-2466

    3. [3]

      [3] (a)Wu Y P, Holze R. J. Solid State Eletrochem., 2003,8:73- 78 (b)Chang J C, Tzeng Y F, Chen J M, et al. Electrochim. Acta, 2009,54:7066-7070

    4. [4]

      [4] (a)Jung H G, Jang M W, Hassoun J, et al. Nat. Commum., 2011,2:516 (b)Shen L F, Uchaker E, Zhang X G, et al. Adv. Mater., 2012,24:6502-6506

    5. [5]

      [5] Fleischhammer M, Waldmann T, Bisle G, et al. J. Power Sources, 2015,274:432-439

    6. [6]

      [6] Fulvio P F, Brown S S, Adcock J, et al. Chem. Mater., 2011, 23:4420-4427

    7. [7]

      [7] (a)Schnorr J M, Swager T M. Chem. Mater., 2011,23:646- 657 (b)Goodenough J B, Kim Y. Chem. Mater., 2010,22:587-603 (c)Manthiram A. J. Phys. Chem. Lett., 2011,2:176-178

    8. [8]

      [8] (a)Prakash A S, Manikandan P, Ramesha K, et al. Chem. Mater., 2010,22:2857-2863 (b)Wang Y Q, Gu L, Guo Y G, et al. J. Am. Chem. Soc., 2012,134:7874-7879 (c)Li C C, Li Q H, Chen L B, et al. ACS Appl. Mater. Interfaces, 2012,4:1233-1238

    9. [9]

      [9] Amine K, Belharouak I, Chen Z, et al. Adv. Mater., 2010, 22:3052-3057

    10. [10]

      [10] (a)Koudriachova M V, Harrison N M, de Leeuw S W. Solid State Ionics, 2003,157:35-38 (b)Vu A, Qian Y, Stein A. Adv. Energy Mater., 2012,2:1056 -1085

    11. [11]

      [11] (a)Rangappa D, Murukanahally K D, Tomai T, et al. Nano Lett., 2012,12:1146-1151 (b)Ellis B L, Makahnouk W R M, Makimura Y, et al. Nat. Mater., 2007,6:749-753 (c)Recham N, Chotard J N, Dupont L, et al. Nat. Mater., 2010,9:68-74 (d)Barpanda P, Ati M, Melot B C, et al. Nat. Mater., 2011, 10:772-779 (e)Tripathi R, Ramesh T N, Ellis B L, et al. Angew. Chem. Int. Ed., 2010,49:8738-8742

    12. [12]

      [12] Patoux S, Masquelier C. Chem. Mater., 2002,14:5057-5068

    13. [13]

      [13] Milne N A, Griffith C S, Hanna J V, et al. Chem. Mater., 2006,18:3192-3202

    14. [14]

      [14] (a)Roberts M A, Sankar G, Thomas J M, et al. Nature, 1996, 381:401-403 (b)Du H, Fang M, Chen J, et al. J. Mater. Chem., 1996,6: 1827-1830

    15. [15]

      [15] (a)Anderson M W, Terasaki O, Oshuna T, et al. Philos. Mag. B, 1995,71:813-841 (b)Lin Z, Rocha J, Brando P, et al. J. Phys. Chem., 1997, 101:7114-7120

    16. [16]

      [16] Rubio C, Casado C, Gorgojo P, et al. Eur. J. Inorg. Chem., 2010,1:159-163

    17. [17]

      [17] Aurbach D, Zaban A. J. Electroanal. Chem., 1995,393:43- 53

    18. [18]

      [18] Cao Y, Xiao L, Ai X, et al. Electrochem. Solid State, 2003, 6:A30-A33

    19. [19]

      [19] (a)Tang M, Newman J. J. Electrochem. Soc., 2012,159:A1922 -A1927 (b)Park M S, Kim J H, Jo Y N, et al. J. Mater. Chem., 2011, 21:17960-17966

    20. [20]

      [20] Yan N, Wang F, Zhong H, et al. Sci. Rep., 2013,3:1568

    21. [21]

      [21] (a)Spotnitz R, Franklin J. J. Power Sources, 2003,113:81- 100 (b)Lee S B, Pyun S I. Carbon, 2002,40:2333-2339 (c)He Y B, Liu M, Huang Z D, et al. J. Power Sources, 2013,239:269-276

    22. [22]

      [22] Jouan P Y, Peignon M C, Cardinaud C, et al. Appl. Surf. Sci., 1993,68:595-603

  • 加载中
    1. [1]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    2. [2]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    3. [3]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    4. [4]

      Siyu ZhangKunhong GuBing'an LuJunwei HanJiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-0. doi: 10.3866/PKU.WHXB202309028

    5. [5]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    6. [6]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

    7. [7]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    8. [8]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    9. [9]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    10. [10]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    11. [11]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    12. [12]

      Chenyue HuangHongfei ZhengNing QinCanpei WangLiguang WangJun Lu . Single-Crystal Nickel-Rich Cathode Materials: Challenges and Strategies. Acta Physico-Chimica Sinica, 2024, 40(9): 2308051-0. doi: 10.3866/PKU.WHXB202308051

    13. [13]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    14. [14]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    15. [15]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    16. [16]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    17. [17]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    18. [18]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    19. [19]

      Jiaxuan ZuoKun ZhangJing WangXifei Li . Nucleation Regulation and Mechanism of Precursors for Nickel Cobalt Manganese-based Cathode Materials in Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100009-0. doi: 10.3866/PKU.WHXB202404042

    20. [20]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

Metrics
  • PDF Downloads(0)
  • Abstract views(496)
  • HTML views(133)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return